


2025届贵州省黔三州九年级数学第一学期开学学业水平测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为=82分,=82分,S甲2=245,S乙2=190,那么成绩较为整齐的是( )
A.甲班B.乙班C.两班一样整齐D.无法确定
2、(4分)某机械厂七月份生产零件50万个,计划八、九月份共生产零件万个,设八、九月份平均每月的增长率为x,那么x满足的方程是
A.B.
C.D.
3、(4分)如图,AC、BD是四边形ABCD的对角线,若E、F、G、H分别是BD、BC、AC、AD的中点,顺次连接E、F、G、H四点,得到四边形EFGH,则下列结论不正确的是( )
A.四边形EFGH一定是平行四边形B.当AB=CD时,四边形EFGH是菱形
C.当AC⊥BD时,四边形EFGH是矩形D.四边形EFGH可能是正方形
4、(4分)下列代数式属于分式的是( )
A.B.3yC.D.+y
5、(4分)如图,已知:函数和的图象交于点P(﹣3,﹣4),则根据图象可得不等式>的解集是( )
A.>﹣4B.>﹣3
C.>﹣2D.<﹣3
6、(4分)下列各式正确的是( )
A.B.C.D.
7、(4分)中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米,数据0.000000007用科学记数法表示为( )
A.0.7×10-8B.7×10-8C.7×10-9D.7×10-10
8、(4分)如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知正方形的边长为1,如果将向量的运算结果记为向量,那么向量的长度为______
10、(4分)如果将直线平移,使其经过点,那么平移后所得直线的表达式是__________.
11、(4分)若点位于第二象限,则x的取值范围是______.
12、(4分)已知函数,当时,函数值的取值范围是_____________
13、(4分)4的算术平方根是 .
三、解答题(本大题共5个小题,共48分)
14、(12分)小聪和小明沿同一条路同时从学校出发到某超市购物,学校与超市的路程是4千米.小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达超市.图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:
(1)小聪在超市购物的时间为 分钟,小聪返回学校的速度为 千米/分钟;
(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式;
(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?
15、(8分)已知5x+y=2,5y﹣3x=3,在不解方程组的条件下,求3(x+3y)2﹣12(2x﹣y)2的值.
16、(8分)如图,直线与直线交于点,直线经过点.
(1)求直线的函数表达式;
(2)直接写出方程组的解______;
(3)若点在直线的下方,直线的上方,写出的取值范围______.
17、(10分)如图,在中,点对角线上,且,连接。
求证:(1);
(2)四边形是平行四边形。
18、(10分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且(无满分),将其按分数段分为五组,绘制出以下不完整表格:
请根据表格提供的信息,解答以下问题:
(1)本次决赛共有__________名学生参加;
(2)直接写出表中:_______________________
(3)请补全右面相应的频数分布直方图;
(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为__________.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若直角三角形的两边分别为1分米和2分米,则斜边上的中线长为_________.
20、(4分)如果代数式有意义,那么字母x的取值范围是_____.
21、(4分)如图,在△ABC中,AD⊥DE,BE⊥DE,AC、BC分别平分∠BAD和∠ABE.点C在线段DE上.若AD=5,BE=2,则AB的长是_____.
22、(4分)若正多边形的一个内角等于150°,则这个正多边形的边数是______.
23、(4分)以下是小明化简分式的过程.
解:原式
①
②
③
④
(1)小明的解答过程在第_______步开始出错;
(2)请你帮助小明写出正确的解答过程,并计算当时分式的值.
二、解答题(本大题共3个小题,共30分)
24、(8分)数学兴趣小组研究某型号冷柜温度的变化情况,发现该冷柜的工作过程是:当温度达到设定温度℃时,制冷停止,此后冷柜中的温度开始逐渐上升,当上升到℃时,制冷开始,温度开始逐渐下降,当冷柜自动制冷至℃时,制冷再次停止,…,按照以上方式循环进行.同学们记录内9个时间点冷柜中的温度(℃)随时间变化情况,制成下表:
(1)如图,在直角坐标系中,描出上表数据对应的点,并画出当时温度随时间变化的函数图象;
(2)通过图表分析发现,冷柜中的温度是时间的函数.
①当时,写出符合表中数据的函数解析式;
②当时,写出符合表中数据的函数解析式;
(3)当前冷柜的温度℃时,冷柜继续工作36分钟,此时冷柜中的温度是多少?
25、(10分)如图,四边形OABC为矩形,点B坐标为(4,2),A,C分别在x轴,y轴上,点F在第一象限内,OF的长度不变,且反比例函数经过点F.
(1)如图1,当F在直线y = x上时,函数图象过点B,求线段OF的长.
(2)如图2,若OF从(1)中位置绕点O逆时针旋转,反比例函数图象与BC,AB相交,交点分别为D,E,连结OD,DE,OE.
①求证:CD=2AE.
②若AE+CD=DE,求k.
③设点F的坐标为(a,b),当△ODE为等腰三角形时,求(a+b)2的值.
26、(12分)如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.
(1)求证:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
∵S甲2=245,S乙2=190,
∴S甲2 S乙2
∴成绩较为整齐的是乙班.
故选B.
2、C
【解析】
主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.
【详解】
依题意得八、九月份的产量为10(1+x)、10(1+x)2,∴10(1+x)+10(1+x)2=111.1.
故选C.
本题考查了由实际问题抽象出一元二次方程.增长率问题的一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.
3、C
【解析】
根据三角形中位线定理、平行四边形、矩形、菱形、正方形的判定定理判断即可.
【详解】
解:∵E、F分别是BD、BC的中点,
∴EF∥CD,EF=CD,
∵H、G分别是AD、AC的中点,
∴HG∥CD,HG=CD,
∴HG∥EF,HG=EF,
∴四边形EFGH是平行四边形,A说法正确,不符合题意;
∵F、G分别是BC、AC的中点,
∴FG=AB,
∵AB=CD,
∴FG=EF,
∴当AB=CD时,四边形EFGH是菱形,B说法正确,不符合题意;
当AB⊥BC时,EH⊥EF,
∴四边形EFGH是矩形,C说法错误,符合题意;
当AB=CD,AB⊥BC时,四边形EFGH是正方形,说法正确,不符合题意;
故选:C.
此题考查中点四边形、三角形中位线定理,掌握平行四边形、矩形、菱形、正方形的判定定理是解题的关键.
4、C
【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
【详解】
解:A. 不是分式,故本选项错误,
B. 3y不是分式,故本选项错误,
C. 是分式,故本选项正确,
D. +y不是分式,故本选项错误,
故选:C.
本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.
5、B
【解析】
根据一次函数的图象和两函数的交点坐标即可得出答案.
【详解】
∵函数y=2x+b和y=ax-2的图象交于点(-3,-4),
则根据图象可得不等式2x+b>ax-2的解集是x>-3,
故选B.
此题考查了一次函数与一元一次不等式的应用,主要考查学生的观察能力和理解能力,题型较好,难度不大.
6、D
【解析】
对于选项A,给的分子、分母同时乘以a可得,由此即可作出判断;
对于选项B、C,只需取一对特殊值代入等式两边,再判断两边的值是否相等即可;
对于选项D,先对的分子、分母分别因式分解,再约分即可判断.
【详解】
对于A选项,只有当a=b时,故A选项错误;
对于B选项,可用特殊值法,令a=2、b=3,则,因此B选项是错误;
同样的方法,可判断选项C错误;
对于D选项,=,因此D选项是正确.
故选D
本题可以根据分式的基本性质和因式分解的知识进行求解。
7、C
【解析】
绝对值小于1的数也可以用科学计数法表示,一般形式为a×10-n,其中1≤|a|<10,与较大数的科学计数法不同的是其使用的是负指数幂,n由原数左边起第一个不为零的数字前面的0的个数决定.
【详解】
0.000000007=7×10-9,
故选:C.
题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数决定.
8、A
【解析】
先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当x>1时,直线y=1x都在直线y=kx+b的上方,当x<1时,直线y=kx+b在x轴上方,于是可得到不等式0<kx+b<1x的解集.
【详解】
设A点坐标为(x,1),
把A(x,1)代入y=1x,
得1x=1,解得x=1,
则A点坐标为(1,1),
所以当x>1时,1x>kx+b,
∵函数y=kx+b(k≠0)的图象经过点B(1,0),
∴x<1时,kx+b>0,
∴不等式0<kx+b<1x的解集为1<x<1.
故选:A.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
利用向量的三角形法则直接求得答案.
【详解】
如图:
∵-==且||=1,
∴||=1.
故答案为:1.
此题考查了平面向量,属于基础题,熟记三角形法则即可解答.
10、
【解析】
根据平移不改变k的值可设平移后直线的解析式为y=x+b,然后将点(0,2)代入即可得出直线的函数解析式.
【详解】
解:设平移后直线的解析式为y=x+b,把(0,2)代入直线解析式得解得 b=2,
所以平移后直线的解析式为.
本题考查了一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.
11、
【解析】
点在第二象限时,横坐标<0,纵坐标>0,可得关于x的不等式,解不等式即可得答案.
【详解】
点位于第二象限,
,
解得:,
故答案为.
本题考查了象限内点的坐标特征,解一元一次不等式,解决本题的关键是记住各个象限内点的坐标的符号,进而转化为解不等式的问题.
12、
【解析】
依据k的值得到一次函数的增减性,然后结合自变量的取值范围,得到函数值的取值范围即可.
【详解】
∵函数y=−3x+7中,k=−3<0,
∴y随着x的增大而减小,
当x=2时,y=−3×2+7=1,
∴当x>2时,y<1,
故答案为:y<1.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
13、1.
【解析】
试题分析:∵,∴4算术平方根为1.故答案为1.
考点:算术平方根.
三、解答题(本大题共5个小题,共48分)
14、(1)15,;(2)s=t;(2)2千米
【解析】
(1)根据购物时间=离开时间﹣到达时间即可求出小聪在超市购物的时间;再根据速度=路程÷时间即可算出小聪返回学校的速度;
(2)根据点的坐标利用待定系数法即可求出小明离开学校的路程s与所经过的时间t之间的函数关系式;
(2)根据点的坐标利用待定系数法即可求出当20≤s≤45时小聪离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式,令两函数关系式相等即可得出关于t的一元一次方程,解之即可求出t值,再将其代入任意一函数解析式求出s值即可.
【详解】
解:(1)20﹣15=15(分钟);
4÷(45﹣20)=(千米/分钟).
故答案为:15;.
(2)设小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式为s=mt+n,
将(0,0)、(45,4)代入s=mt+n中,
,解得:,
∴s=t.
∴小明离开学校的路程s与所经过的时间t之间的函数关系式为s=t.
(2)当20≤s≤45时,设小聪离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式为s=kt+b,将(20,4)、(45,0)代入s=kt+b,
,解得:,
∴s=﹣t+1.
令s=t=﹣t+1,
解得:t=,
∴s=t=×=2.
答:当小聪与小明迎面相遇时,他们离学校的路程是2千米.
本题考查了一次函数的应用以及待定系数法求一次函数解析式,解题的关键是:(1)根据数量关系列式计算;(2)根据点的坐标利用待定系数法求出函数关系式;(2)根据点的坐标利用待定系数法求出函数关系式.
15、1.
【解析】
将原式进行因式分解,便可转化为已知的代数式组成的式子,进而整体代入,便可求得其值.
【详解】
原式=3[(x+3y)2﹣4(2x﹣y)2]
=3[(x+3y)+2(2x﹣y)](x+3y)﹣2(2x﹣y)]
=3(5x+y)(5y﹣3x),
∵5x+y=2,5y﹣3x=3,
∴原式=3×2×3=1.
本题主要考查了因式分解,求代数式的值,整体思想,正确地进行因式分解,将未知代数式转化为已知代数式的式子,是本题解题的关键所在.
16、(1);(2);(3).
【解析】
(1)求出点C坐标,由待定系数法可得直线的函数表达式;
(2)方程组的解即为交点C横纵坐标的值;
(3)由题意可知当,,根据直线的表达式求出即可.
【详解】
解:(1)当时,,解得,
即点坐标为;
由与直线交于点,直线经过点,得
,
解得,
直线的函数表达式为;
(2)方程组的解即为交点C横纵坐标的值, 点坐标为,所以方程组解为;
(3)由题意可知当,,
所以.
本题考查了一次函数的解析式及图像,熟练掌握待定系数法,将题目与图像相结合是解题的关键.
17、(1)见解析;(2)四边形是平行四边形,见解析.
【解析】
(1)根据全等三角形的判定方法SAS,判断出△ADE≌△CBF.
(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.
【详解】
证明:(1)∵四边形是平行四边形,
∴,
∴,
在和中,
∴(SAS);
(2)由(1)可得,
∴,
∴,
∴,
∴,
又∵,
∴四边形是平行四边形.
此题主要考查了平行四边形的判定和性质的应用,以及全等三角形的判定和性质的应用,要熟练掌握.
18、解:(1)50;(2)20,0.24;(3)见详解;(4)52%.
【解析】
(1)用第二组的频数除以它所占的频率得到调查的总人数;
(2)用第四组的频率乘以样本容量得到a的值,用第三组的频数除以样本容量得到b的值;
(3)利用a的值补全频数分布直方图;
(4)用第四组和第五组的频数和除以样本容量即可.
【详解】
解:解:(1)10÷0.2=50,
所以本次决赛共有50名学生参加;
(2)a=50×0.4=20,b==0.24;
故答案为50;20;0.24;
(3)补全频数分布直方图为:
(4)本次大赛的优秀率=×100%=52%.
故答案为50;20;0.24;52%.
本题考查了频数(率)分布直方图:能从频数分布直方图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1分米或分米.
【解析】
分2是斜边时和2是直角边时,利用勾股定理列式求出斜边,然后根据直角三角形斜边上的中线等于斜边的一半解答.
【详解】
2是斜边时,此直角三角形斜边上的中线长=×2=1分米,
2是直角边时,斜边=,
此直角三角形斜边上的中线长=×分米,
综上所述,此直角三角形斜边上的中线长为1分米或分米.
故答案为1分米或分米.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,难点在于分情况讨论.
20、x⩾−2且x≠1
【解析】
先根据分式及二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.
【详解】
∵代数式有意义,
∴,
解得x⩾−2且x≠1.
故答案为:x⩾−2且x≠1.
本题考查分式有意义的条件和二次根式有意义的条件,解题的关键是掌握分式有意义的条件和二次根式有意义的条件.
21、1
【解析】
过点C作CF⊥AB于F,由角平分线的性质得CD=CF,CE=CF,于是可证△ADC≌△AFC,△CBE≌△CBF,可得AD=AF,BE=BF,即可得结论.
【详解】
解:如图,过点C作CF⊥AB于F,
∵AC,BC分别平分∠BAD,∠ABE,
∴CD=CF,CE=CF,
∵AC=AC,BC=BC,
∴△ADC≌△AFC,△CBE≌△CBF,
∴AF=AD=5,BF=BE=2,
∴AB=AF+BF=1.
故答案是:1.
本题考查全等三角形的判定和性质,角平分线的性质,添加恰当辅助线构造全等三角形是本题的关键.
22、1.
【解析】
首先根据求出外角度数,再利用外角和定理求出边数.
【详解】
正多边形的一个内角等于,
它的外角是:,
它的边数是:.
故答案为:1.
此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.
23、 (1) ②;(2)2
【解析】
根据分式的混合运算法则进行计算即可.
【详解】
(1)②,应该是.
(2)解:原式=
.
当时,
此题考查分式的混合运算,解题关键在于掌握运算法则.
二、解答题(本大题共3个小题,共30分)
24、(1)见详解;(2)①y=;②y=-4x+1;(3)-4°.
【解析】
(1)根据表格内容描点、画图、连线即可.
(2)①由x·y=-80,即可得出当4≤x<20时,y关于x的函数解析式;
②根据点(20,-4)、(21,-8),利用待定系数法求出y关于x的函数解析式,再代入其它点的坐标验证即可.
(3)根据表格数据,找出冷柜的工作周期为20分钟,由此即可得出答案.
【详解】
(1)如图所示:
(2)①根据图象可知,图象接近反比例函数图象的一部分,设y=,过点(8,-10),
∴k=-80,
∴y=(4≤x<20).
②根据图象可知,图象接近直线,设y=kx+b,过点(20,-4),(21,-8),
∴y=-4x+1.
(3)∵因温度的变化,20分钟一个周期,
∴36=20+16
∴冷柜连续工作36分钟时,在反比例函数变化范围内,故温度为-4°.
本题主要考查一次函数和反比例的解析式,以及应用.
25、(1)OF =4;(2)①证明见解析;② k=;③96-16或36-4.
【解析】
分析(1)由y=经过点B (2,4).,求出k的值,再利用F在直线y = x,求出m的值,最后利用勾股定理求解即可;(2) ①利用反比例函数k的几何意义可求解; ②Rt△EBD中,分别用n表示出BD、BE、DE,再利用勾股定理解答即可; ③分三种情况讨论即可:OE=OD;
OE=DE;OD=DE.
详解:(1)∵F在直线y=x上
∴设F(m,m)
作FM⊥x轴
∴FM=OM=m
∵y=经过点B (2,4).
∴k=8
∴
∴
∴
∴OF =4;
(2)①∵函数 的图象经过点D,E
∴,∵ OC=2,OA=4
∴CO=2AE
②由①得:CD=2AE
∴可设:CD=2n,AE=n
∴DE=CD+AE=3n
BD=4-2n, BE=2-n
在Rt△EBD,由勾股定理得:
∴
解得
③CD=2c,AE=c
情况一:若OD=DE
∴
∴
∴
情况二:若OE=DE
∴
∴
情况三:OE=OD 不存在.
点睛:本题考查了反比例函数的性质,利用反比例函数的解析式求点的坐标,利用勾股定理得到方程,进而求出线段的长,注意解题时分类讨论的思想应用.
26、(1)证明过程见解析;(2)8.
【解析】
(1)由平行四边形的性质得出AD∥BC,AB∥CD,证出∠DAE=∠F,∠D=∠ECF,由AAS证明△ADE≌△FCE即可;
(2)由全等三角形的性质得出AE=EF=3,由平行线的性质证出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的长.
【详解】
(1)∵四边形ABCD是平行四边形, ∴AD∥BC,AB∥CD,
∴∠DAE=∠F,∠D=∠ECF, ∵E是▱ABCD的边CD的中点, ∴DE=CE,
在△ADE和△FCE中,
,∴△ADE≌△FCE(AAS);
(2)∵ADE≌△FCE, ∴AE=EF=3, ∵AB∥CD, ∴∠AED=∠BAF=90°,
在▱ABCD中,AD=BC=5, ∴DE==4, ∴CD=2DE=8
考点:(1)平行四边形的性质;(2)全等三角形的判定与性质
题号
一
二
三
四
五
总分
得分
组别
成绩(分)
频数(人数)
频率
一
2
二
10
0.2
三
12
四
0.4
五
6
时间
…
4
8
10
16
20
21
22
23
24
…
温度/℃
…
…
2025届贵州省黔南州瓮安县数学九上开学学业水平测试试题【含答案】: 这是一份2025届贵州省黔南州瓮安县数学九上开学学业水平测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届贵州省都匀市第六中学数学九年级第一学期开学学业水平测试模拟试题【含答案】: 这是一份2025届贵州省都匀市第六中学数学九年级第一学期开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年南安市数学九年级第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024年南安市数学九年级第一学期开学学业水平测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。