2022届贵州省黔三州中考数学模拟预测试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,已知线段AB,分别以A,B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至点M,则∠BCM的度数为( )
A.40° B.50° C.60° D.70°
2.据统计,2018年全国春节运输人数约为3 000 000 000人,将3 000 000 000用科学记数法表示为( )
A.0.3×1010 B.3×109 C.30×108 D.300×107
3.如图,四边形ABCD内接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,则∠BDC的度数为( )
A.100° B.105° C.110° D.115°
4.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( )
A.20% B.11% C.10% D.9.5%
5.如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A11B11C11D11E11F11的边长为( )
A. B. C. D.
6.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为( )
A.① B.② C.③ D.④
7.若a是一元二次方程x2﹣x﹣1=0的一个根,则求代数式a3﹣2a+1的值时需用到的数学方法是( )
A.待定系数法 B.配方 C.降次 D.消元
8.下列图形中,既是中心对称,又是轴对称的是( )
A. B. C. D.
9.-2的绝对值是()
A.2 B.-2 C.±2 D.
10.一次函数的图象上有点和点,且,下列叙述正确的是
A.若该函数图象交y轴于正半轴,则
B.该函数图象必经过点
C.无论m为何值,该函数图象一定过第四象限
D.该函数图象向上平移一个单位后,会与x轴正半轴有交点
11.4的平方根是( )
A.2 B.±2 C.8 D.±8
12.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )
A.15 B.17 C.19 D.24
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.计算×3结果等于_____.
14.如图,已知,,则________.
15.在Rt△ABC纸片上剪出7个如图所示的正方形,点E,F落在AB边上,每个正方形的边长为1,则Rt△ABC的面积为_____.
16.不等式组的解集是 _____________.
17.如图,在平面直角坐标系中,△的顶点、在坐标轴上,点的坐标是(2,2).将△ABC沿轴向左平移得到△A1B1C1,点落在函数y=-.如果此时四边形的面积等于,那么点的坐标是________.
18.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.求小张骑自行车的速度;求小张停留后再出发时y与x之间的函数表达式;求小张与小李相遇时x的值.
20.(6分)(2017四川省内江市)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:
(1)这项被调查的总人数是多少人?
(2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;
(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.
21.(6分)如图,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);
(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.
22.(8分)如图,圆O是的外接圆,AE平分交圆O于点E,交BC于点D,过点E作直线.
(1)判断直线l与圆O的关系,并说明理由;
(2)若的平分线BF交AD于点F,求证:;
(3)在(2)的条件下,若,,求AF的长.
23.(8分)如图,菱形ABCD中,已知∠BAD=120°,∠EGF=60°, ∠EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于E、F.
(1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;
(2)知识探究:
①如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);
②如图丙,在顶点G运动的过程中,若,探究线段EC、CF与BC的数量关系;
(3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=,当>2时,求EC的长度.
24.(10分)给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且点P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.
在平面直角坐标系xOy中,⊙O的半径为1.
(1)如图2,已知M(,),N(,﹣),在A(1,0),B(1,1),C(,0)三点中,是线段MN关于点O的关联点的是 ;
(2)如图3,M(0,1),N(,﹣),点D是线段MN关于点O的关联点.
①∠MDN的大小为 ;
②在第一象限内有一点E(m,m),点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;
③点F在直线y=﹣x+2上,当∠MFN≥∠MDN时,求点F的横坐标x的取值范围.
25.(10分)若两个不重合的二次函数图象关于轴对称,则称这两个二次函数为“关于轴对称的二次函数”.
(1)请写出两个“关于轴对称的二次函数”;
(2)已知两个二次函数和是“关于轴对称的二次函数”,求函数的顶点坐标(用含的式子表示).
26.(12分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/下降到12月份的11340元/.求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/?请说明理由
27.(12分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:
请根据以上统计图提供的信息,解答下列问题:
(1)共抽取 名学生进行问卷调查;
(2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;
(3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数.
(4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
解:∵由作法可知直线l是线段AB的垂直平分线,
∴AC=BC,
∴∠CAB=∠CBA=25°,
∴∠BCM=∠CAB+∠CBA=25°+25°=50°.
故选B.
2、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.
【详解】
解:根据科学计数法的定义可得,3 000 000 000=3×109,故选择B.
【点睛】
本题考查了科学计数法的定义,确定n的值是易错点.
3、B
【解析】
根据圆内接四边形的性质得出∠C的度数,进而利用平行线的性质得出∠ABC的度数,利用角平分线的定义和三角形内角和解答即可.
【详解】
∵四边形ABCD内接于⊙O,∠A=130°,
∴∠C=180°-130°=50°,
∵AD∥BC,
∴∠ABC=180°-∠A=50°,
∵BD平分∠ABC,
∴∠DBC=25°,
∴∠BDC=180°-25°-50°=105°,
故选:B.
【点睛】
本题考查了圆内接四边形的性质,关键是根据圆内接四边形的性质得出∠C的度数.
4、C
【解析】
设二,三月份平均每月降价的百分率为,则二月份为,三月份为,然后再依据第三个月售价为1,列出方程求解即可.
【详解】
解:设二,三月份平均每月降价的百分率为.
根据题意,得=1.
解得,(不合题意,舍去).
答:二,三月份平均每月降价的百分率为10%
【点睛】
本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a,每次降价的百分率为a,则第一次降价后为a(1-x);第二次降价后后为a(1-x)2,即:原数x(1-降价的百分率)2=后两次数.
5、A
【解析】
分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,依此规律可得正六边形A11B11C11D11E11F11的边长=()10×2,然后化简即可.
详解:连接OE1,OD1,OD2,如图,
∵六边形A1B1C1D1E1F1为正六边形,
∴∠E1OD1=60°,
∴△E1OD1为等边三角形,
∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,
∴OD2⊥E1D1,
∴OD2=E1D1=×2,
∴正六边形A2B2C2D2E2F2的边长=×2,
同理可得正六边形A3B3C3D3E3F3的边长=()2×2,
则正六边形A11B11C11D11E11F11的边长=()10×2=.
故选A.
点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.
6、C
【解析】
根据正方形的判定定理即可得到结论.
【详解】
与左边图形拼成一个正方形,
正确的选择为③,
故选C.
【点睛】
本题考查了正方形的判定,是一道几何结论开放题,认真观察,熟练掌握和应用正方形的判定方法是解题的关键.
7、C
【解析】
根据一元二次方程的解的定义即可求出答案.
【详解】
由题意可知:a2-a-1=0,
∴a2-a=1,
或a2-1=a
∴a3-2a+1
=a3-a-a+1
=a(a2-1)-(a-1)
=a2-a+1
=1+1
=2
故选:C.
【点睛】
本题考查了一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义.
8、C
【解析】
根据中心对称图形,轴对称图形的定义进行判断.
【详解】
A、是中心对称图形,不是轴对称图形,故本选项错误;
B、不是中心对称图形,也不是轴对称图形,故本选项错误;
C、既是中心对称图形,又是轴对称图形,故本选项正确;
D、不是中心对称图形,是轴对称图形,故本选项错误.
故选C.
【点睛】
本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.
9、A
【解析】
根据绝对值的性质进行解答即可
【详解】
解:﹣1的绝对值是:1.
故选:A.
【点睛】
此题考查绝对值,难度不大
10、B
【解析】
利用一次函数的性质逐一进行判断后即可得到正确的结论.
【详解】
解:一次函数的图象与y轴的交点在y轴的正半轴上,则,,若,则,故A错误;
把代入得,,则该函数图象必经过点,故B正确;
当时,,,函数图象过一二三象限,不过第四象限,故C错误;
函数图象向上平移一个单位后,函数变为,所以当时,,故函数图象向上平移一个单位后,会与x轴负半轴有交点,故D错误,
故选B.
【点睛】
本题考查了一次函数图象上点的坐标特征、一次函数图象与几何变换,解题的关键是熟练掌握一次函数的性质,灵活应用这些知识解决问题,属于中考常考题型.
11、B
【解析】
依据平方根的定义求解即可.
【详解】
∵(±1)1=4,
∴4的平方根是±1.
故选B.
【点睛】
本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.
12、D
【解析】
由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n>1时),由此得出规律解决问题.
【详解】
解:解:∵第①个图案有三角形1个,
第②图案有三角形1+3=4个,
第③个图案有三角形1+3+4=8个,
…
∴第n个图案有三角形4(n﹣1)个(n>1时),
则第⑦个图中三角形的个数是4×(7﹣1)=24个,
故选D.
【点睛】
本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出an=4(n﹣1)是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
根据二次根式的乘法法则进行计算即可.
【详解】
故答案为:1.
【点睛】
考查二次根式的乘法,掌握二次根式乘法的运算法则是解题的关键.
14、65°
【解析】
根据两直线平行,同旁内角互补求出∠3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】
∵m∥n,∠1=105°,
∴∠3=180°−∠1=180°−105°=75°
∴∠α=∠2−∠3=140°−75°=65°
故答案为:65°.
【点睛】
此题考查平行线的性质,解题关键在于利用同旁内角互补求出∠3.
15、
【解析】
如图,设AH=x,GB=y,利用平行线分线段成比例定理,构建方程组求出x,y即可解决问题.
【详解】
解:如图,设AH=x,GB=y,
∵EH∥BC,
,
∵FG∥AC,
,
由①②可得x=,y=2,
∴AC=,BC=7,
∴S△ABC=,
故答案为.
【点睛】
本题考查图形的相似,平行线分线段成比例定理,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.
16、x<-1
【解析】
解不等式①得:x<5,
解不等式②得:x<-1
所以不等式组的解集是x<-1.
故答案是:x<-1.
17、 (-5, )
【解析】
分析:依据点B的坐标是(2,2),BB2∥AA2,可得点B2的纵坐标为2,再根据点B2落在函数y=﹣的图象上,即可得到BB2=AA2=5=CC2,依据四边形AA2C2C的面积等于,可得OC=,进而得到点C2的坐标是(﹣5,).
详解:如图,∵点B的坐标是(2,2),BB2∥AA2,∴点B2的纵坐标为2.又∵点B2落在函数y=﹣的图象上,∴当y=2时,x=﹣3,∴BB2=AA2=5=CC2.又∵四边形AA2C2C的面积等于,∴AA2×OC=,∴OC=,∴点C2的坐标是(﹣5,).
故答案为(﹣5,).
点睛:本题主要考查了反比例函数的综合题的知识,解答本题的关键是熟练掌握反比例函数的性质以及平移的性质.在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度.
18、30
【解析】
根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P的度数.
【详解】
∵BP是∠ABC的平分线,CP是∠ACM的平分线,∠ABP=20°,∠ACP=50°,
∴∠PBC=20°,∠PCM=50°,
∵∠PBC+∠P=∠PCM,
∴∠P=∠PCM-∠PBC=50°-20°=30°,
故答案为:30
【点睛】
本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)300米/分;(2)y=﹣300x+3000;(3)分.
【解析】
(1)由图象看出所需时间.再根据路程÷时间=速度算出小张骑自行车的速度.
(2)根据由小张的速度可知:B(10,0),设出一次函数解析式,用待定系数法求解即可.
(3)求出CD的解析式,列出方程,求解即可.
【详解】
解:(1)由题意得:(米/分),
答:小张骑自行车的速度是300米/分;
(2)由小张的速度可知:B(10,0),
设直线AB的解析式为:y=kx+b,
把A(6,1200)和B(10,0)代入得:
解得:
∴小张停留后再出发时y与x之间的函数表达式;
(3)小李骑摩托车所用的时间:
∵C(6,0),D(9,2400),
同理得:CD的解析式为:y=800x﹣4800,
则
答:小张与小李相遇时x的值是分.
【点睛】
考查一次函数的应用,考查学生观察图象的能力,熟练掌握待定系数法求一次函数解析式是解题的关键.
20、(1)50;(2)108°;(3).
【解析】
分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案.
本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.
(2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=.
点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
21、(1)作图见解析(2)∠BDC=72°
【解析】
解:(1)作图如下:
(2)∵在△ABC中,AB=AC,∠ABC=72°,
∴∠A=180°﹣2∠ABC=180°﹣144°=36°.
∵AD是∠ABC的平分线,∴∠ABD=∠ABC=×72°=36°.
∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°.
(1)根据角平分线的作法利用直尺和圆规作出∠ABC的平分线:
①以点B为圆心,任意长为半径画弧,分别交AB、BC于点E、F;
②分别以点E、F为圆心,大于EF为半径画圆,两圆相较于点G,连接BG交AC于点D.
(2)先根据等腰三角形的性质及三角形内角和定理求出∠A的度数,再由角平分线的性质得出
∠ABD的度数,再根据三角形外角的性质得出∠BDC的度数即可.
22、(1)直线l与相切,见解析;(2)见解析;(3)AF=.
【解析】
连接由题意可证明,于是得到,由等腰三角形三线合一的性质可证明,于是可证明,故此可证明直线l与相切;
先由角平分线的定义可知,然后再证明,于是可得到,最后依据等角对等边证明即可;
先求得BE的长,然后证明∽,由相似三角形的性质可求得AE的长,于是可得到AF的长.
【详解】
直线l与相切.
理由:如图1所示:连接OE.
平分,
.
,
.
,
.
直线l与相切.
平分,
.
又,
.
又,
.
.
由得.
,,
∽.
,即,解得;.
.
故答案为:(1)直线l与相切,见解析;(2)见解析;(3)AF=.
【点睛】
本题主要考查的是圆的性质、相似三角形的性质和判定、等腰三角形的性质、三角形外角的性质、切线的判定,证得是解题的关键.
23、(1)证明见解析(2)①线段EC,CF与BC的数量关系为:CE+CF=BC.②CE+CF=BC(3)
【解析】
(1)利用包含60°角的菱形,证明△BAE≌△CAF,可求证;
(2)由特殊到一般,证明△CAE′∽△CGE,从而可以得到EC、CF与BC的数量关系
(3) 连接BD与AC交于点H,利用三角函数BH ,AH,CH的长度,最后求BC长度.
【详解】
解:(1)证明:∵四边形ABCD是菱形,∠BAD=120°,
∴∠BAC=60°,∠B=∠ACF=60°,AB=BC,AB=AC,
∵∠BAE+∠EAC=∠EAC+∠CAF=60°,
∴∠BAE=∠CAF,
在△BAE和△CAF中,
,
∴△BAE≌△CAF,
∴BE=CF,
∴EC+CF=EC+BE=BC,
即EC+CF=BC;
(2)知识探究:
①线段EC,CF与BC的数量关系为:CE+CF=BC.
理由:如图乙,过点A作AE′∥EG,AF′∥GF,分别交BC、CD于E′、F′.
类比(1)可得:E′C+CF′=BC,
∵AE′∥EG,
∴△CAE′∽△CGE
,
,
同理可得:,
,
即;
②CE+CF=BC.
理由如下:
过点A作AE′∥EG,AF′∥GF,分别交BC、CD于E′、F′.
类比(1)可得:E′C+CF′=BC,
∵AE′∥EG,∴△CAE′∽△CAE,
∴,∴CE=CE′,
同理可得:CF=CF′,
∴CE+CF=CE′+CF′=(CE′+CF′)=BC,
即CE+CF=BC;
(3)连接BD与AC交于点H,如图所示:
在Rt△ABH中,
∵AB=8,∠BAC=60°,
∴BH=ABsin60°=8×=,
AH=CH=ABcos60°=8×=4,
∴GH===1,
∴CG=4-1=3,
∴,
∴t=(t>2),
由(2)②得:CE+CF=BC,
∴CE=BC -CF=×8-=.
【点睛】
本题属于相似形综合题,主要考查了全等三角形的判定和性质、菱形的性质,相似三角形的判定和性质等知识的综合运用,解题的关键是灵活运用这些知识解决问题,学会添加辅助线构造相似三角形.
24、(1)C;(2)①60;②E(,1);③点F的横坐标x的取值范围≤xF≤.
【解析】
(1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件;
(2)①如图3-1中,作NH⊥x轴于H.求出∠MON的大小即可解决问题;
②如图3-2中,结论:△MNE是等边三角形.由∠MON+∠MEN=180°,推出M、O、N、E四点共圆,可得∠MNE=∠MOE=60°,由此即可解决问题;
③如图3-3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,首先证明点E在直线y=-x+2上,设直线交⊙O′于E、F,可得F(,),观察图形即可解决问题;
【详解】
(1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件,
故答案为C.
(2)①如图3-1中,作NH⊥x轴于H.
∵N(,-),
∴tan∠NOH=,
∴∠NOH=30°,
∠MON=90°+30°=120°,
∵点D是线段MN关于点O的关联点,
∴∠MDN+∠MON=180°,
∴∠MDN=60°.
故答案为60°.
②如图3-2中,结论:△MNE是等边三角形.
理由:作EK⊥x轴于K.
∵E(,1),
∴tan∠EOK=,
∴∠EOK=30°,
∴∠MOE=60°,
∵∠MON+∠MEN=180°,
∴M、O、N、E四点共圆,
∴∠MNE=∠MOE=60°,
∵∠MEN=60°,
∴∠MEN=∠MNE=∠NME=60°,
∴△MNE是等边三角形.
③如图3-3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,
易知E(,1),
∴点E在直线y=-x+2上,设直线交⊙O′于E、F,可得F(,),
观察图象可知满足条件的点F的横坐标x的取值范围≤xF≤.
【点睛】
此题考查一次函数综合题,直线与圆的位置关系,等边三角形的判定和性质,锐角三角函数,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.
25、(1)任意写出两个符合题意的答案,如:;(2),顶点坐标为
【解析】
(1)根据关于y轴对称的二次函数的特点,只要两个函数的顶点坐标根据y轴对称即可;
(2)根据函数的特点得出a=m,--=0, ,进一步得出m=a,n=-b,p=c,从而得到y1+y2=2ax2+2c,根据关系式即可得到顶点坐标.
【详解】
解:(1)答案不唯一,如;
(2)∵y1=ax2+bx+c和y2=mx2+nx+p是“关于y轴对称的二次函数”,
即a=m,--=0,,
整理得m=a,n=-b,p=c,
则y1+y2=ax2+bx+c+ax2-bx+c=2ax2+2c,
∴函数y1+y2的顶点坐标为(0,2c).
【点睛】
本题考查了二次函数的图象与几何变换,得出变换的规律是解题的关键.
26、(1)10%;(1)会跌破10000元/m1.
【解析】
(1)设11、11两月平均每月降价的百分率是x,那么4月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;
(1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断.
【详解】
(1)设11、11两月平均每月降价的百分率是x,
则11月份的成交价是:14000(1-x),
11月份的成交价是:14000(1-x)1,
∴14000(1-x)1=11340,
∴(1-x)1=0.81,
∴x1=0.1=10%,x1=1.9(不合题意,舍去)
答:11、11两月平均每月降价的百分率是10%;
(1)会跌破10000元/m1.
如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:
11340(1-x)1=11340×0.81=9184.5<10000,
由此可知今年1月份该市的商品房成交均价会跌破10000元/m1.
【点睛】
此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.
27、(1)1;(2)详见解析;(3)750;(4).
【解析】
(1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;
(2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图;
(3)计算足球的百分比,根据样本估计总体,即可解答;
(4)利用概率公式计算即可.
【详解】
(1)30÷15%=1(人).
答:共抽取1名学生进行问卷调查;
故答案为1.
(2)足球的人数为:1﹣60﹣30﹣24﹣36=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°.
如图所示:
(3)3000×0.25=750(人).
答:全校学生喜欢足球运动的人数为750人.
(4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)
共有25种等可能的结果数,选同一项目的结果数为5,
所以甲乙两人中有且选同一项目的概率P(A)=.
【点睛】
本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
2024年贵州省黔东南州剑河四中中考数学模拟试卷 (含解析): 这是一份2024年贵州省黔东南州剑河四中中考数学模拟试卷 (含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年贵州省中考导向权威预测数学模拟预测题(二)(含解析): 这是一份2024年贵州省中考导向权威预测数学模拟预测题(二)(含解析),共27页。
2024年贵州省中考导向权威预测数学模拟试卷(三): 这是一份2024年贵州省中考导向权威预测数学模拟试卷(三),共8页。试卷主要包含了7×10⁸,下列运算中,正确的是,已知m, n是一元二次方程,定义关于a,b的新运算等内容,欢迎下载使用。