2025届甘肃省张掖市甘州中学九年级数学第一学期开学调研模拟试题【含答案】
展开
这是一份2025届甘肃省张掖市甘州中学九年级数学第一学期开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)将分式中的x,y的值同时扩大为原来的3倍,则分式的值( )
A.扩大6倍B.扩大9倍C.不变D.扩大3倍
2、(4分)直线y=2x+2沿y轴向下平移6个单位后与x轴的交点坐标是( )
A.(-4,0)B.(-1,0)C.(0,2)D.(2,0)
3、(4分)下列说法中错误的是( )
A.四边相等的四边形是菱形B.菱形的对角线长度等于边长
C.一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是菱形
4、(4分)已知在△ABC中,AB=AC,AB的垂直平分线交线段AC于D,若△ABC和△DBC的周长分别是60 cm和38 cm,则△ABC的腰长和底边BC的长分别是( )
A.22cm和16cmB.16cm和22cm
C.20cm和16cmD.24cm和12cm
5、(4分)已知一次函数的图象如图所示,当时,的取值范围是( )
A.B.C.D.
6、(4分)点关于原点的对称点的坐标为( )
A.B.C.D.
7、(4分)从某市5000名初一学生中,随机抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是( )
A.平均数B.中位数C.众数D.方差
8、(4分)用一些相同的正方形,摆成如下的一些大正方形,如图第(1)个图中小正方形只有一个,且阴影面积为1,第(2)个图中阴影小正方形面积和3;第(3)个图中阴影小正方形面积和为5,第(9)个图中阴影小正方形面积和为( )
A.11B.13C.15D.17
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知正比例函数y=kx的图象经过点A(﹣1,2),则正比例函数的解析式为 .
10、(4分)一组数据5,8,x,10,4的平均数是2x,则这组数据的中位数是___________.
11、(4分)用反证法证明:“四边形中至少有一个角是直角或钝角”时,应假设________.
12、(4分)如图,中,AB的垂直平分线DE分别交AB、BC于E、D,若,则的度数为__________
13、(4分)如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=6,则AD=__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简,再求值:1-÷其中a=2020,b=2019.
15、(8分)已知:如图,在平面直角坐标系中,一次函数的图象分别与轴交于点A、 B,点在轴上,若,求直线PB的函数解析式.
16、(8分)如图,用两张等宽的纸条交叉重叠地放在一起,重合的四边形是一个特殊的四边形.请判断这个特殊的四边形应该叫做什么,并证明你的结论.
17、(10分)某商场购进甲、乙两种空调共40台.已知购进一台甲种空调比购进一台乙种空调进价多0.2万元;用36万元购进乙种空调数量是用18万元购进甲种空调数量的4倍.请解答下列问题:
(1)求甲、乙两种空调每台进价各是多少万元?
(2)若商场预计投入资金不多于11.5万元用于购买甲、乙两种空调,且购进甲种空调至少14台,商场有哪几种购进方案?
18、(10分)如图,菱形的对角线相交于点,,,相交于点.求证:四边形是矩形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知长方形的面积为6m2+60m+150(m>0),长与宽的比为3:2,则这个长方形的周长为_____.
20、(4分)若关于x的分式方程﹣=1无解,则m的值为_____.
21、(4分)分解因时:=__________
22、(4分)如图,已知在矩形中,,,沿着过矩形顶点的一条直线将折叠,使点的对应点落在矩形的边上,则折痕的长为__.
23、(4分)4是_____的算术平方根.
二、解答题(本大题共3个小题,共30分)
24、(8分)某商场计划从厂家购进甲、乙两种不同型号的电视机,已知进价分别为:甲种每台1500元,乙种每台2100元.
(1)若商场同时购进这两种不同型号的电视机50台,金额不超过76000元,商场有几种进货方案,并写出具体的进货方案.
(2)在(1)的条件下,若商场销售一台甲、乙型号的电视机的销售价分别为1650元、2300元,以上进货方案中,哪种进货方案获利最多?最多为多少元?
25、(10分)植树节来临之际,学校准备购进一批树苗,已知2棵甲种树苗和5棵乙种树苗共需113元;3棵甲种树苗和2棵乙种树苗共需87元.
(1)求一棵甲种树苗和一棵乙种树苗的售价各是多少元;
(2)学校准备购进这两种树苗共100棵,并且乙种树苗的数量不多于甲种树苗数量的2倍,请设计出最省钱的购买方案,并求出此时的总费用.
26、(12分)如图,在中,,,点D是BC边的中点,于点E,于点F.
(1)________(用含α的式子表示)
(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转,与AC边交于点N.根据条件补全图形,并写出DM与DN的数量关系,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
将原式中的x、y分别用3x、3y代替,化简,再与原分式进行比较.
【详解】
解:∵把分式中的x与y同时扩大为原来的3倍,
∴原式变为:= =9×,
∴这个分式的值扩大9倍.
故选:B.
本题考查了分式的基本性质.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.
2、D
【解析】
试题分析:将y=2x+2沿y轴向下平移6个单位后的解析式为:y=2x-4,当y=0时,则x=2,即图像与x轴的交点坐标为(2,0).
考点:一次函数的性质
3、B
【解析】
由菱形的判定和性质可判断各个选项.
【详解】
解:∵四边相等的四边形是菱形
∴A选项正确
∵菱形的对角线长度不一定等于边长,
∴B选项错误
∵一组邻边相等的平行四边形是菱形
∴C选项正确
∵对角线互相垂直平分的四边形是菱形
∴选项D正确
故选:B.
本题考查了菱形的判定与性质,熟练运用菱形的判定和性质解决问题是本题的关键.
4、A
【解析】
根据已知条件作出图像,连接BD,根据垂直平分线的性质可得BD=AD,可知两三角形的周长差为AB,结合条件可求出腰长,再由周长可求出BC,即可得出答案.
【详解】
如图,连接BD,
∵D在线段AB的垂直平分线上,
∴BD=AD,
∴BD+DC+BC=AC+BC=38cm,
且AB+AC+BC=60cm,
∴AB=60-38=22cm,
∴AC=22cm,
∴BC=38-AC=38-22=16cm,
即等腰三角形的腰为22cm,底为16cm,
故选A.
此题主要考查垂直平分线的性质,解题的关键是正确作出辅助线再来解答.
5、C
【解析】
试题解析:从图像可以看出当自变量时,y的取值范围在x轴的下方,故
故选C.
6、A
【解析】
根据两个点关于原点对称时,它们的坐标符号相反可得答案.
【详解】
解:根据中心对称的性质,可知:点P(-3,2)关于原点O中心对称的点的坐标为(3,-2).
故选:A .
本题考查关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律.
7、C
【解析】
服装厂最感兴趣的是哪种尺码的服装售量较多,也就是需要参照指标众数.
【详解】
由于众数是数据中出现次数最多的数,故服装厂最感兴趣的指标是众数.
故选(C)
本题考查统计量的选择,解题的关键是区分平均数、中位数、众数和方差的概念与意义进行解答;
8、D
【解析】
根据前4个图中阴影小正方形的面积和找到规律,然后利用规律即可解题.
【详解】
第(1)个面积为12﹣02=1;
第(2)个面积为22﹣12=3;
第(3)个面积为32﹣22=5;
…
第(9)个面积为92﹣82=17;
故选:D.
本题为图形规律类试题,找到规律是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=﹣1x
【解析】
试题分析:根据点在直线上点的坐标满足方程的关系,把点A的坐标代入函数解析式求出k值即可得解:
∵正比例函数y=kx的图象经过点A(﹣1,1),
∴﹣k=1,即k=﹣1.
∴正比例函数的解析式为y=﹣1x.
10、5
【解析】
可运用求平均数公式,求出x的值,再根据中位数的性质,求出中位数即可
【详解】
依题意得:5+8+x+10+4=2x×5
∴x=3,
∴3,4,5,8,10,的中位数是5
故答案为:5
此题考查算术平均数,中位数,难度不大
11、四边形中所有内角都是锐角.
【解析】
反证法的步骤中,第一步是假设结论不成立,反面成立.
【详解】
用反证法证明“四边形中至少有一个角是钝角或直角”时第一步应假设:四边形中所有内角都是锐角.
故答案为:四边形中所有内角都是锐角.
本题考查了反证法,解答此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
12、80°.
【解析】
根据线段的垂直平分线的性质得到DB=DA,得到∠DAB=∠B=40°,根据三角形的外角性质计算即可.
【详解】
解:∵DE是线段AB的垂直平分线,
∴DB=DA,
∴∠DAB=∠B=40°,
∴∠ADC=∠DAB+∠B=80°.
故答案为:80°.
本题考查线段的垂直平分线的性质、三角形的外角性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
13、3
【解析】
由矩形的性质可得AB=CD=6,再由折叠的性质可得AE=AB=6, 在Rt△ADE中,根据勾股定理求得AD的长即可.
【详解】
∵纸片ABCD为矩形,
∴AB=CD=6,
∵矩形纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF,
∴AE=AB=6,
∵E为DC的中点,
∴DE=3,
在Rt△ADE中,AE=6,DE=3,
由勾股定理可得,AD=
故答案为:.
本题考查了矩形的性质、折叠的性质及勾股定理,正确求得AE=6、DE=3是解决问题的关键.
三、解答题(本大题共5个小题,共48分)
14、;2019.
【解析】
先把分子、分母因式分解,再按照分式的除法法则计算、约分,最后通分,按照分式减法法则计算化简,把a、b的值代入求值即可得答案.
【详解】
原式=1-÷
=1-×
=-
=.
当a=2020,b=2019时,原式==2019.
本题考查了分式的化简求值,熟练掌握分式的混合运算运算法则是解题关键.
15、直线的函数解析式为或.
【解析】
根据题意可得P点可在x轴左边或x轴右边,先求出A和B的坐标然后根据,可确定P的位置,进而运用待定系数法可求出直线PB的函数解析式.
【详解】
解:令,得∴ A点坐标为(2 ,0)
令,得∴ B点坐标为(0 ,4)
∵
∴即
∴ P点的坐标分别为或
设直线的函数解析式为
∴或
∴或
∴ 直线的函数解析式为或.
本题考查一次函数待定系数法的运用,综合性较强,解答此类题目的关键是根据三角形面积的关系求出P点的坐标,继而利用待定系数法求解.
16、四边形是菱形,见解析.
【解析】
根据菱形的判定方法即可求解.
【详解】
解:四边形是菱形,
证明:过点分别作于点,于点,
∴,
∵两张纸条等宽
∴,,且,
∴四边形是平行四边形,
∴,
∴,
∴.
∴四边形是菱形.
此题主要考查菱形的判定,解题的关键是熟知菱形的判定定理.
17、(1)甲空调每台的进价为0.4万元,则乙空调每台的进价为0.2万元;(2)商场共有四种购进方案:①购进甲种空调14台,乙种空调26台;②购进甲种空调15台,乙种空调25台;③购进甲种空调16台,乙种空调24台;④购进甲种空调17台,乙种空调23台.
【解析】
(1)设甲空调每台的进价为x万元,则乙空调每台的进价为(x﹣0.2)万元,根据“用36万元购进乙种空调数量是用18万元购进甲种空调数量的4倍”列出方程,解之可得;
(2)设购进甲种空调m台,则购进乙种空调(40﹣m)台,由“投入资金不多于11.5万元”列出关于m的不等式,解之求得m的取值范围,继而得到整数m的可能取值,从而可得所有方案.
【详解】
解:(1)设甲空调每台的进价为x万元,则乙空调每台的进价为(x﹣0.2)万元,
根据题意,得:,
解得:x=0.4,
经检验:x=0.4是原分式方程的解,
所以甲空调每台的进价为0.4万元,则乙空调每台的进价为0.2万元;
(2)设购进甲种空调m台,则购进乙种空调(40﹣m)台,
根据题意,得:0.4m+0.2(40﹣m)≤11.5,
解得:m≤17.5,
又m≥14,
∴14≤m≤17.5,
则整数m的值可以是14,15,16,17,
所以商场共有四种购进方案:
①购进甲种空调14台,乙种空调26台;
②购进甲种空调15台,乙种空调25台;
③购进甲种空调16台,乙种空调24台;
④购进甲种空调17台,乙种空调23台.
此题考查了分式方程的应用,以及一元一次不等式的应用,弄清题中的等量关系是解本题的关键.
18、见解析.
【解析】
首先判定四边形OAEB是平行四边形,再由菱形的性质得出∠AOB=90°,从而判定四边形OAEB是矩形.
【详解】
证明:∵,,
∴四边形是平行四边形,
又∵四边形是菱形,
∴,
∴,
∴平行四边形是矩形.
∴四边形是矩形
本题考查了矩形的判定,菱形的性质, 掌握矩形的判定和菱形的性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、10m+1
【解析】
对面积表达式进行变形,根据面积=长×宽,再根据长与宽的比是3:2,判断出长宽的表达式,继而得出周长.
【详解】
解:∵6m2+60m+11=6(m2+10m+25)=6(m+5)2=[3(m+5)][2(m+5)],
且长:宽=3:2,
∴长为3(m+5),宽为2(m+5),
∴周长为:2[3(m+5)+2(m+5)]=10m+1.
故答案为:10m+1
本题考查了用提取公因式和完全平方公式进行因式分解的实际应用,熟练掌握并准确分析是解题的关键.
20、﹣2或1
【解析】
分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.
【详解】
去分母得:x2﹣mx﹣3x+3=x2﹣x,
解得:(2+m)x=3,
由分式方程无解,得到2+m=0,即m=﹣2或,即m=1,
综上,m的值为﹣2或1.
故答案为:﹣2或1
此题考查了分式方程的解,注意分母不为0这个条件.
21、.
【解析】
首先提取公因式,进而利用完全平方公式分解因式即可.
【详解】
.
故答案为:.
此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.
22、或
【解析】
沿着过矩形顶点的一条直线将∠B折叠,可分为两种情况:(1)过点A的直线折叠,(2)过点C的直线折叠,分别画出图形,根据图形分别求出折痕的长.
【详解】
(1)如图1,沿将折叠,使点的对应点落在矩形的边上的点,
由折叠得:是正方形,此时:,
(2)如图2,沿,将折叠,使点的对应点落在矩形的边上的点,
由折叠得:,
在中,,
,
设,则,
在中,由勾股定理得:,解得:,
在中,由勾股定理得:,
折痕长为:或.
考查矩形的性质、轴对称的性质、直角三角形及勾股定理等知识,分类讨论在本题中得以应用,画出相应的图形,依据图形矩形解答.
23、16.
【解析】
试题解析:∵42=16,
∴4是16的算术平方根.
考点:算术平方根.
二、解答题(本大题共3个小题,共30分)
24、(1)有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机1台,乙种型号的电视机0台;(2)方案一的利润大,最多为751元.
【解析】
(1)设购进甲种型号的电视机x台,则乙种型号的电视机y台.数量关系为:两种不同型号的电视机1台,金额不超过76000元;
(2)根据利润=数量×(售价-进价),列出式子进行计算,即可得到答案.
【详解】
解:(1)设购进甲种型号的电视机x台,则乙种型号的电视机(1-x)台.则
110x+2100(1-x)≤76000,
解得:x≥48.
则1≥x≥48.
∵x是整数,
∴x=49或x=1.
故有2种进货方案:
方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;
方案二:是甲种型号的电视机1台,乙种型号的电视机0台;
(2)方案一的利润为:49×(161-110)+(2300-2100)=751(元)
方案二的利润为:1×(161-110)=710(元).
∵751>710
∴方案一的利润大,最多为751元.
本题考查了一元一次不等式的应用.解决问题的关键是读懂题意,依题意列出不等式进行求解.
25、(1)一棵甲种树苗的售价为19元,一棵乙种树苗的售价为15元;(2)最省钱的购买方案为购买甲种树苗34棵,购买乙种树苗66棵,总费用为1636元.
【解析】
分析:(1)设一棵甲种树苗的售价为x元,一棵乙种树苗的售价为y元,依据2棵甲种树苗和5棵乙种树苗共需113元;3棵甲种树苗和2棵乙种树苗共需87元,解方程组求解即可.
(2)设购买甲种树苗a棵,则购买乙种树苗(100-a)棵,总费用为w元,依据w随着a的增大而增大,可得当a取最小值时,w有最大值.
详解:(1)设一棵甲种树苗的售价为x元,一棵乙种树苗的售价为y元,依题意得
,
解得,
∴一棵甲种树苗的售价为19元,一棵乙种树苗的售价为15元;
(2)设购买甲种树苗a棵,则购买乙种树苗(100-a)棵,总费用为w元,依题意得
w=19a+15(100-a)=4a+1500,
∵4>0,
∴w随着a的增大而增大,
∴当a取最小值时,w有最大值,
∵100-a≤2a,
∴a≥,a为整数,
∴当a=34时,w最小=4×34+1500=1636(元),
此时,100-34=66,
∴最省钱的购买方案为购买甲种树苗34棵,购买乙种树苗66棵,总费用为1636元.
点睛:本题主要考查了一次函数的应用,解决问题的关键是将现实生活中的事件与数学思想联系起来,读懂题意列出函数关系式以及不等式.
26、 (1);(2) ,理由见解析
【解析】
(1)先利用等腰三角形的性质和三角形内角和得到∠B=∠C=90°-,然后利用互余可得到∠EDB=;
(2)①如图,利用∠EDF=180°-2画图;
②先利用等腰三角形的性质得到DA平分∠BAC,再根据角平分线性质得到DE=DF,根据四边形内角和得到∠EDF=180°-2,所以∠MDE=∠NDF,然后证明△MDE≌△NDF得到DM=DN;
【详解】
解:(1)∵AB=AC,
∴∠B=∠C=(180°-∠A)=90°-,
而DE⊥AB,
∴∠DEB=90°,
∴∠EDB=90°-∠B=90°-(90°-)=;
故答案为:;
(2)①补全图形如图所示.
②结论:.
理由;在四边形AEDF中,,于点E,于点F,
∴,
连接AD,∵点D是BC边的中点,,
∴,
又∵射线DM绕点D顺时针旋转与AC边交于点N,
∴,
∵,
∴,
∴,
∴.
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质,全等三角形的判定和性质,解题的关键是利用数形结合区找出边和角的关系,然后解决问题.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024-2025学年甘肃省张掖市名校数学九年级第一学期开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年甘肃省张掖市甘州中学九年级(下)开学数学试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年甘肃省张掖市甘州区张掖市甘州区南关学校九年级数学第一学期期末学业水平测试模拟试题含答案,共7页。试卷主要包含了cs60°的值等于等内容,欢迎下载使用。