2025届福建省泉州永春县联考九年级数学第一学期开学达标测试试题【含答案】
展开
这是一份2025届福建省泉州永春县联考九年级数学第一学期开学达标测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如表记录了甲、乙、丙、丁四名学生最近几次数学综合测试成绩的平均数与方差:
根据表中数据,要从中选择一名成好且发挥稳定的同学参加竟赛,应该选择( )
A.甲B.乙C.丙D.丁
2、(4分)如图,已知直线y1=x+a与y2=kx+b相交于点P(﹣1,2),则关于x的不等式x+a>kx+b的解集正确的是( )
A.x>﹣1B.x>1C.x<1D.x<﹣1
3、(4分)如图,在中,,,.点,,分别是相应边上的中点,则四边形的周长等于( )
A.8B.9C.12D.13
4、(4分)的算术平方根是( )
A.B.C.D.
5、(4分)《九章算术》是我国古代的数学名著,书中的“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,问折断处离地面的高度是多少?设折断后离地面的高度为x尺,则可列方程为( )
A.x2–3=(10–x)2B.x2–32=(10–x)2C.x2+3=(10–x)2D.x2+32=(10–x)2
6、(4分)如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的面积分别为m,n,H为线段DF的中点,则BH的长为( )
A.B.C.D.
7、(4分)一组数据5,8,8,12,12,12,44的众数是( )
A.5B.8C.12D.44
8、(4分)甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次、甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数和方差两个因素分析,应选( ).
A.甲B.乙C.丙D.丁
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)将二次根式化为最简二次根式的结果是________________
10、(4分)如图,Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,CD=6cm,则AB的长为 cm.
11、(4分)如图,直线 与轴交于点 ,依次作正方形 、正方形 、……正方形 ,使得点、…, 在直线 上,点 在轴上,则点 的坐标是________
12、(4分)如图1,是一个三节段式伸缩晾衣架,如图2,是其衣架侧面示意图,为衣架的墙角固定端,为固定支点,为滑动支点,四边形和四边形是菱形,且,点在上滑动时,衣架外延钢体发生角度形变,其外延长度(点和点间的距离)也随之变化,形成衣架伸缩效果,伸缩衣架为初始状态时,衣架外延长度为,当点向点移动时,外延长度为.
(1)则菱形的边长为______.
(2)如图3,当时,为对角线(不含点)上任意一点,则的最小值为______.
13、(4分)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是__.
三、解答题(本大题共5个小题,共48分)
14、(12分)为了倡导节约能源,自某日起,我国对居民用电采用阶梯电价,为了使大多数家庭不增加电费支出,事前就需要了解居民全年月平均用电量的分布情况,制订一个合理的方案.某调查人员随机调查了市户居民全年月平均用电量(单位:千瓦时)数据如下:
得到如下频数分布表:
画出频数分布直方图,如下:
(1)补全数分布表和率分布直方图
(2)若是根据数分布表制成扇形统计图,则不低于千瓦时的部分圆心角的度数为_____________;
(3)若市的阶梯电价方案如表所示,你认为这个阶梯电价方案合理吗?
15、(8分)已知△ABC的三条边长分别为2,5,6,在△ABC所在平面内画一条直线,将△ABC分成两个三角形,使其中一个三角形为等腰三角形.
(1)这样的直线最多可以画 条;
(2)请在三个备用图中分别画出符合条件的一条直线,要求每个图中得到的等腰三角形腰长不同,尺规作图,不写作法,保留作图痕迹.
16、(8分)如图,在中,是它的一条对角线,过、两点分别作,,、为垂足.求证:四边形是平行四边形.
17、(10分)如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B离地面0.6m,荡秋千到AB的位置时,下端B距静止位置的水平距离EB等于2.4m,距地面1.4m,求秋千AB的长.
18、(10分)已知反比例函数与一次函数y=kx+b的图象都经过点(-2,-1),且当x=3时这两个函数值相等.
(1)求这两个函数的解析式;
(2)直接写出当x取何值时,成立.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若不等式组的解集是,则m的值是________.
20、(4分)因式分解:________.
21、(4分)如图,在中,和分别平分和,过点作,分别交于点,若,则线段的长为_______.
22、(4分)已知直线(n为正整数)与坐标轴围成的三角形的面积为Sn,则S1+S2+S3+…+S2012= .
23、(4分)对一种环保电动汽车性能抽测,获得如下条形统计图.根据统计图可估计得被抽检电动汽车一次充电后平均里程数为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,点 E , F 分别为 OB , OD 的中点,延长 AE 至 G ,使 EG =AE ,连接 CG .
(1)求证: △ABE≌△CDF ;
(2)当 AB 与 AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.
25、(10分)如图,在四边形中,,点在上,,,.
(1)求的度数;
(2)直接写出四边形的面积为 .
26、(12分)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.试判断四边形AFBE的形状,并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据平均数和方差的意义进行解答即可.
【详解】
从平均数看,成绩最好的是甲、丙同学,
从方差看,甲方差小,发挥最稳定,
所以要从中选择一名成绩好且发挥稳定的同学参加竞赛,应该选择甲,
故选A.
本题考查了平均数和方差,熟练掌握它们的意义是解题的关键.
2、A
【解析】
根据图象求解不等式,要使x+a>kx+b,则必须在y1=x+a在y2=kx+b上方,根据图形即可写出答案.
【详解】
解:因为直线y1=x+a与y2=kx+b相交于点P(﹣1,2)
要使不等式x+a>kx+b,则必须在y1=x+a在y2=kx+b上方
所以可得x>﹣1时,y1=x+a在y2=kx+b上方
故选A.
本题主要考查利用函数图形求解不等式,关键在于根据图象求交点坐标.
3、B
【解析】
根据三角形中位线的性质及线段的中点性质求解即可.
【详解】
解:点,,分别是相应边上的中点
是三角形ABC的中位线
同理可得,
四边形的周长
故答案为:B
本题考查了三角形的中位线,熟练运用三角形中位线的性质求线段长是解题的关键.
4、B
【解析】
根据算术平方根的概念求解即可.
【详解】
解:4的算术平方根是2,故选B.
本题考查了算术平方根的概念,属于基础题型,熟练掌握算术平方根的定义是解题的关键.
5、D
【解析】
竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10-x)尺,利用勾股定理解题即可.
【详解】
设竹子折断处离地面x尺,则斜边为(10-x)尺,
根据勾股定理得:x1+31=(10-x)1.
故选D.
此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.
6、A
【解析】
连接BD,BF可证△ DBF为直角三角形,在通过直角三角形中斜边上的中线等于斜边的一半即可
【详解】
如图连接BD,BF;
∵四边形ABCD和四边形BEFG都为正方形,AB=m,BE=n,
∴∠ DBF=90°,DB=,BF=,
∴DF=,
∵H为DF的中点,
∴ BH==,故选A
熟练掌握直角三角形中斜边上的中线等于斜边的一半和辅助线作法是解决本题的关键
7、C
【解析】
根据题目中的数据可以得到这组数据的众数,从而可以解答本题.
【详解】
解:∵一组数据5,8,8,12,12,12,44,
∴这组数据的众数是12,
故选C.
本题考查众数,解答本题的关键是明确题意,会求一组数据的众数.
8、C
【解析】
试题分析:丙的平均数==9,丙的方差= [1+1+1=1]=0.4,
乙的平均数==8.2,
由题意可知,丙的成绩最好,
故选C.
考点:1、方差;2、折线统计图;3、加权平均数
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4
【解析】
直接利用二次根式的性质化简求出答案.
【详解】
,
故答案为:4
此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.
10、1.
【解析】
试题分析:∵在Rt△ABC中,∠ACB=90°,D是AB的中点,
∴线段CD是斜边AB上的中线;
又∵CD=6cm,
∴AB=2CD=1cm.
故答案是:1.
考点:直角三角形斜边上的中线.
11、(22019-1,22018)
【解析】
先求出直线y=x+1与y轴的交点坐标即可得出A1的坐标,故可得出OA1的长,根据四边形A1B1C1O是正方形即可得出B1的坐标,再把B1的横坐标代入直线y=x+1即可得出A1的坐标,同理可得出B2,B3的坐标,可以得到规律:Bn(2n-1,2n-1),据此即可求解点B2019的坐标.
【详解】
解:∵令x=0,则y=1,
∴A1(0,1),
∴OA1=1.
∵四边形A1B1C1O是正方形,
∴A1B1=1,
∴B1(1,1).
∵当x=1时,y=1+1=2,
∴B2(3,2);
同理可得,B3(7,4);
∴B1的纵坐标是:1=20,B1的横坐标是:1=21-1,
∴B2的纵坐标是:2=21,B2的横坐标是:3=22-1,
∴B3的纵坐标是:4=22,B3的横坐标是:7=23-1,
∴Bn的纵坐标是:2n-1,横坐标是:2n-1,
则Bn(2n-1,2n-1),
∴点B2019的坐标是(22019-1,22018).
故答案为:(22019-1,22018).
本题考查一次函数图象上点的坐标特征、正方形的性质和坐标的变化规律.此题难度较大,注意正确得到点的坐标的规律是解题关键.
12、25;
【解析】
(1)过F作于,根据等腰三角形的性质可得.
(2)作等边,等边,得到,得出,而当、、、共线时,最小,再根据,继而求出结果.
【详解】
(1)如图,过F作于,设,由题意衣架外延长度为得,
当时,外延长度为.则.
则有,
∴,
∴.
∵
∴菱形的边长为25cm
故答案为:25cm
(2)作等边,等边,
∴EM=EP, EH=EQ
∴,
∴,,
∴,
当、、、共线时,最小,
易知,
∵,
∴的最小值为.
本题考查菱形的性质,勾股定理等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.
13、
【解析】
根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等, 根据概率公式计算即可 .
【详解】
∵圆中的黑色部分和白色部分关于圆心中心对称,
∴圆中的黑色部分和白色部分面积相等,
∴在圆内随机取一点, 则此点取黑色部分的概率是,
故答案为.
考查的是概率公式、 中心对称图形, 掌握概率公式是解题的关键 .
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)144°;(3)合理,理由详见解析.
【解析】
(1)统计出各组的频数,即可补全频数分布表,根据频数分布表中频率,可以补全频率分布直方图,
(2)用360°乘以不等于160千瓦时的部分所占的百分比即可,
(3)通过覆盖的程度,以及第一档所占的百分比,确定合理性.
【详解】
(1)
(2) 360°×(24%+10%+6%)=144°
(3)合理;从统计图表中看出,全年月平均用电量小于千万时的有户,占,即第一档全年月平均用电量覆盖了大多数居民家庭,所以说是合理的.
考查频率分布直方图、频率分布表、以及扇形统计图的制作方法,理清图表之间的关系,是解决问题的关键.
15、(1)7;(2)见解析
【解析】
(1)根据等腰三角形的性质分别利用AB.、BC、AC为底以及AB、BC、AC为腰得出符合题意的图形即可;(2)根据等腰三角形和垂直平分线的性质作图即可.
【详解】
解:(1)以点A为圆心,AB为半径做弧,交AC于点M1;以点C为圆心,BC为半径做弧,交AC于点M2;以点B为圆心,BC为半径做弧,交AC于点M3;交AB于点M4;作AB的垂直平分线,交AC于点M5;作AC的垂直平分线,交AB于点M6;作BC的垂直平分线,交AC于点M7;共7条
故答案为:7
(2)如图即为所求.
说明:如上7种作法均可.
此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.
16、详见解析
【解析】
由题目条件推出,推出;由,推出根据有一组对边平行且相等的四边形是平行四边形,可以得出结论.
【详解】
证明:∵四边形为平行四边形,
∴,.
∵.
∵,,
∴.
∴,.
∴.
∴四边形是平行四边形.
本题考查了平行四边形的判定,掌握平行四边形的判定定理是解题的关键.
17、4m
【解析】
试题分析:利用已知得出B′E的长,再利用勾股定理得出即可.
解:由题意可得出:B′E=1.4﹣0.6=0.8(m),
则AE=AB﹣0.8,
在Rt△AEB中,
AE2+BE2=AB2,
∴(AB﹣0.8)2+2.42=AB2
解得:AB=4,
答:秋千AB的长为4m.
18、(1)一次函数的解析式为;反比例函数解析式为;(2)x<-2或0<x<3
【解析】
(1)先把点(-2,-1)代入y=,求出反比例函数解析式;再把x=3代入求出y的值,把点(-2,-1)和x=3时y的值代入一次函数解析式即可求出一次函数的解析式;
(2)找出反比例函数在一次函数图象上方对应的自变量的取值范围即可.
【详解】
解:∵反比例函数y=的图象经过(-2,-1),
∴-1=,即m=2,
∴反比例函数解析式为y=;
当x=3时,y=.
把(-2,-1)、(3,)代入y=kx+b,
得,
解得,
∴一次函数的解析式为y=x-;
(2)∵反比例函数y=与一次函数y=kx+b的图象交于点(-2,-1)、(3,),
由图象可知:当x<-2或0<x<3时,反比例函数在一次函数图象的上方,
∴当x<-2或0<x<3时,>kx+b成立.
本题考查了反比例函数与一次函数的交点问题,用待定系数法求一次函数及反比例函数的解析式,函数图象上点的坐标特征,数形结合思想.正确求出两个函数的解析式和画出图象是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
分别求出每个不等式的解集,取共同部分,即可得到m的值.
【详解】
解:,解得:,
∵不等式组的解集为:,
∴;
故答案为:2.
本题考查了由不等式组的解集求参数,解题的关键是根据不等式组的解集求参数.
20、
【解析】
首先提出公因式,然后进一步利用完全平方公式进行因式分解即可.
【详解】
解:原式=
=.
故答案为: .
本题主要考查了因式分解,熟练掌握相关方法及公式是解题关键.
21、5.
【解析】
由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.
【详解】
证明:∵BD为∠ABC的平分线,
∴∠EBD=∠CBD,
又∵EF∥BC,
∴∠EDB=∠CBD,
∴∠EBD=∠EDB,
∴EB=ED,
同理FC=FD,
又∵EF=ED+DF,
∴EF=EB+FC=5.
此题考查等腰三角形的判定与性质,平行线的性质,解题关键在于得出∠EBD=∠EDB
22、.
【解析】
令x=0,则;
令y=0,则,解得.
∴.
∴.
考点:探索规律题(图形的变化类),一次函数图象上点的坐标特征
23、165.125千米.
【解析】
根据加权平均数的定义列式进行求解即可.
【详解】
估计被抽检电动汽车一次充电后平均里程数为:
165.125(千米),
故答案为165.125千米.
本题考查了条形统计图的知识以及加权平均数,能准确分析条形统计图并掌握加权平均数的计算公式是解此题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)时,四边形EGCF是矩形,理由见解析.
【解析】
(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;
(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,OB=OD,OA=OC,
∴∠ABE=∠CDF,
∵点E,F分别为OB,OD的中点,
∴BE=OB,DF=OD,
∴BE=DF,
在△ABE和△CDF中,
(2)当AC=2AB时,四边形EGCF是矩形;理由如下:
∵AC=2OA,AC=2AB,
∴AB=OA,
∵E是OB的中点,
∴AG⊥OB,
∴∠OEG=90°,
同理:CF⊥OD,
∴AG∥CF,
∴EG∥CF,
∵EG=AE,OA=OC,
∴OE是△ACG的中位线,
∴OE∥CG,
∴EF∥CG,
∴四边形EGCF是平行四边形,
∵∠OEG=90°,
∴四边形EGCF是矩形.
本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题.
25、(1);(2)四边形的面积为.
【解析】
(1)连接AE,得出△ABE是等腰直角三角形,得出∠AEB=45°,,在△ADE中,,得出∠AED=90°,即可得出结果;(2)证出△CDE是等腰直角三角形,得出,BC=BE+CE=3,证明四边形ABCD是直角梯形,由梯形面积公式即可得出结果.
【详解】
(1)连接,如图所示:
,,
,,
在中,,,
,
,
;
(2),,
是等腰直角三角形,
,
,
,
,
,
四边形是直角梯形,
四边形的面积;
故答案为.
本题考查了勾股逆定理,等腰直角三角形,直角梯形的面积,掌握勾股逆定理,等腰直角三角形的性质是解题的关键.
26、四边形AFBE是菱形,理由见解析.
【解析】
由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF,由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.
【详解】
解:四边形AFBE是菱形,理由如下:
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AEG=∠BFG,
∵EF垂直平分AB,
∴AG=BG,
在△AGE和△BGF中,
,
∴△AGE≌△BGF(AAS);∴AE=BF,
∵AD∥BC,
∴四边形AFBE是平行四边形,
又∵EF⊥AB,
∴四边形AFBE是菱形.
故答案为:四边形AFBE是菱形,理由见解析.
本题考查了平行四边形的性质、菱形的判定方法、全等三角形的判定与性质、线段垂直平分线的性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
甲
乙
平均数
9
8
方差
1
1
全年月平均用电量/千时
频数
频率
合计
档次
全年月平均用电量/千瓦时
电价(元/千瓦时)
第一档
第二档
第三档
大于
全年月平均用电量/千时
频数
频率
合计
相关试卷
这是一份2025届福建省泉州市永春县第一中学九上数学开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届福建省泉州泉港区四校联考九年级数学第一学期开学学业质量监测试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届福建省晋江市永春县数学九年级第一学期开学检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。