2025届福建省福州文博中学九上数学开学质量跟踪监视试题【含答案】
展开
这是一份2025届福建省福州文博中学九上数学开学质量跟踪监视试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某平行四边形的对角线长为x,y,一边长为6,则x与y的值可能是( )
A.4和7B.5和7C.5和8D.4和17
2、(4分)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均成绩都相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是( )
A.甲B.乙C.丙D.丁
3、(4分)电话每台月租费元,市区内电话(三分钟以内)每次元,若某台电话每次通话均不超过分钟,则每月应缴费(元)与市内电话通话次数之间的函数关系式是( )
A.B.
C.D.
4、(4分)下列各组数是勾股数的是( )
A.6,7,8B.1,,2
C.5,4,3D.0.3,0.4,0.5
5、(4分)下列式子中一定是二次根式的是( )
A.B.C.D.
6、(4分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )
A.B.C.D.
7、(4分)如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距高是;③AF=CF;④△ABF 的面积为其中一定成立的有( )个.
A.1B.2C.3D.4
8、(4分)如图,菱形中,,与交于,为延长线上的一点,且,连结分别交,于点,,连结则下列结论:①;②与全等的三角形共有个;③;④由点,,,构成的四边形是菱形.其中正确的是( )
A.①④B.①③④C.①②③D.②③④
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若分式的值为零,则x的值为______.
10、(4分)如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离AE、CF分别是1cm、2cm,则线段EF的长为 ______cm.
11、(4分)菱形ABCD的两条对角线长分别为6和4,则菱形ABCD的面积是_____.
12、(4分)甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽取的两张牌牌面数字的积为奇数,则甲获胜;若所抽取的两张牌牌面数字的积为偶数,则乙获胜.这个游戏________.(填“公平”或“不公平”)
13、(4分)如图,四边形是矩形 ,是延长线上的一点,是上一点,;若,则 = ________ .
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)探究新知:如图1,已知与的面积相等,试判断与的位置关系,并说明理由.
(2)结论应用:
①如图2,点,在反比例函数的图像上,过点作轴,过点作轴,垂足分别为,,连接.试证明:.
②若①中的其他条件不变,只改变点,的位置如图3所示,请画出图形,判断与的位置关系并说明理由.
15、(8分)如图,, 点分别在线段上,且
求证:
已知分别是的中点,连结
①若,求的度数:
②连结当的长为何值时,四边形是矩形?
16、(8分)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽取了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:
请你根据图中的信息,解答下列问题:
(1)写出扇形图中______,并补全条形图;
(2)样本数据的平均数是______,众数是______,中位数是______;
(3)该区体育中考选报引体向上的男生共有1200人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?
17、(10分)先化简, 再求值.(其中 p是满足-3<p<3 的整数).
18、(10分)平行四边形的 2 个顶点的坐标为,,第三个顶点在 轴上,且与 轴的距离是 3 个单位,求第四个顶点的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某校女子排球队的15名队员中有4个人是13岁,7个人是14岁,4个人是15岁,则该校女好排球队队员的平均年龄是____岁.
20、(4分)函数为任意实数)的图象必经过定点,则该点坐标为____.
21、(4分)若,则的取值范围为_____.
22、(4分)如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B-A-D-C方向以1单位/秒的速度匀速运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,写出
①AB=__________;
②CD=_______________(提示:过A作CD的垂线);
③BC=_______________.
23、(4分)在▱ABCD中,∠BAD的平分线AE把边BC分成5和6两部分,则▱ABCD的周长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)化简或求值:
(1)化简:;
(2)先化简,再求值:,其中.
25、(10分)已知a,b分别是6的整数部分和小数部分.
(1)求a,b的值;
(2)求3ab2的值.
26、(12分)将矩形ABCD绕点B顺时针旋转得到矩形A1BC1D1,点A、C、D的对应点分别为A1、C1、D1
(1)当点A1落在AC上时
①如图1,若∠CAB=60°,求证:四边形ABD1C为平行四边形;
②如图2,AD1交CB于点O.若∠CAB≠60°,求证:DO=AO;
(2)如图3,当A1D1过点C时.若BC=5,CD=3,直接写出A1A的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
分析: 如图:因为平行四边形的对角线互相平分,所, ,在 中任意两边之和大于第三边,任意两边之差小于第三边,将各答案代入验证即可求得.
详解: A、∵ , ∴不可能;
B、∵,∴不可能;
C、∵,∴可能;
D、,∴不可能;
故选C..
点睛: 本题考查平行四边形的性质以及三角形的三边关系定理.熟练掌握平行四边形的性质和三角形三条边的关系式解答本题的关键.
2、D
【解析】
∵射箭成绩的平均成绩都相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,
∴S2甲>S2乙>S2丙>S2丁,
∴射箭成绩最稳定的是丁;
故选D.
3、C
【解析】
本题考查了一次函数的解析式,设为,把k和b代入即可.
【详解】
设函数解析式为:,
由题意得,k=0.2,b=28,
∴函数关系式为:.
故选:C.
本题考查了一次函数解析式的表示,熟练掌握一次函数解析式的表示方法是解题的关键.
4、C
【解析】
欲求证是否为勾股数,这里给出三边的长,只要验证即可.
【详解】
解:、,故此选项错误;
、不是整数,故此选项错误;
、,故此选项正确;
、0.3,0.4,0.5,勾股数为正整数,故此选项错误.
故选:.
本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.
5、A
【解析】
一般地,我们把形如(a≥0)的式子叫做二次根式,据此进行判断即可.
【详解】
A. ,是二次根式;
B. 中,根指数为3,故不是二次根式;
C. 中,-2<0,故不是二次根式;
D. 中,x不一定是非负数,故不是二次根式;
故选A.
本题主要考查了二次根式的定义,解决问题的关键是理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.
6、B
【解析】
结合轴对称图形的概念进行求解即可.
【详解】
解:根据轴对称图形的概念可知:
A、不是轴对称图形,故本选项错误;
B、是轴对称图形,故本选项错误;
C、不是轴对称图形,故本选项错误;
D、不是轴对称图形,故本选项正确.
故选B.
本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
7、C
【解析】
根据菱形的性质,逐个证明即可.
【详解】
① 四边形ABCD为菱形
AB=BC
∠DAB=60°
△ABF≌△CBF
因此 ①正确.
②过E作EM垂直于AB的延长线于点M
CE=2
BE=4
∠DAB=60°
因此点E到AB的距高为
故②正确.
③根据①证明可得△ABF≌△CBF
AF=CF
故③正确.
④ 和 的高相等
所以
△ABF≌△CBF
故④错误.
故有3个正确,选C.
本题主要考查菱形的性质,关键在于证明三角形全等,是一道综合形比较强的题目.
8、A
【解析】
连结,可说明四边形是平行四边形,即是的中点;由有题意的可得O是BD的中点,即可判定①;运用菱形和平行四边形的性质寻找判定全等三角形的条件,找出与其全等的三角形即可判定②;证出OG是△ABD的中位线,得出OG//AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形0DGF=S△ABF.即可判定③;先说明△ABD是等边三角形,则BD=AB,即可判定④.
【详解】
解:如图:连结.
,,
四边形是平行四边形,
是的中点,
∵O是BD的中点
,①正确;
有,,,,,,共个,②错误;
∵OB=OD,AG=DG,
∴OG是△ABD的中位线,
∴OG//AB,OG=AB,
∴△GOD∽△ABD,△ABF∽△OGF,
∵△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,
∴△AFG的面积=△OGF的面积的2倍,
又∵△GOD的面积=△A0G的面积=△B0G的面积,
.∴;不正确;③错误;
是等边三角形.
,
是菱形,④正确.
故答案为A.
本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;考查知识点较多、难道较大,解题的关键在于对所学知识的灵活应用.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1
【解析】
试题分析:因为当时分式的值为零,解得且,所以x=-1.
考点:分式的值为零的条件.
10、3
【解析】
∵四边形ABCD为正方形,
∴AB=BC,∠ABC=90°.
∵AE⊥l,CF⊥l,
∴∠E=∠F=90°,∠EAB+∠ABE=90°,∠FBC+∠BCF=90°.
∵∠ABE+∠ABC+∠FBC=180°,
∴∠ABE+∠FBC=90°,
∴∠EAB=∠FBC.
在△ABE和△BCF中,
,
∴△ABE≌△BCF(AAS),
∴BE=CF=2cm,BF=AE=1cm,
∴EF=BE+BF=2+1=3cm.
故答案为3.
11、1
【解析】
根据菱形的面积等于对角线积的一半,即可求得其面积.
【详解】
∵菱形ABCD的两条对角线长分别为6和4,
∴其面积为4×6=1.
故答案为:1.
此题考查了菱形的性质.注意熟记①利用平行四边形的面积公式.②菱形面积=ab.(a、b是两条对角线的长度).
12、不公平.
【解析】
试题分析:先根据题意画出树状图,然后根据概率公式求解即可.
画出树状图如下:
共有9种情况,积为奇数有4种情况
所以,P(积为奇数)=
即甲获胜的概率是
所以这个游戏不公平.
考点:游戏公平性的判断
点评:解题的关键是熟练掌握概率的求法:概率=所求情况数与总情况数的比值.
13、
【解析】
分析:由矩形的性质得出∠BCD=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,由互余两角关系得出方程,解方程即可.
详解:∵四边形ABCD是矩形,
∴∠BCD=90°,AB∥CD,AD∥BC,
∴∠FEA=∠ECD,∠DAC=∠ACB=21°,
∵∠ACF=∠AFC,∠FAE=∠FEA,
∴∠ACF=2∠FEA,
设∠ECD=x,则∠ACF=2x,
∴∠ACD=3x,
∴3x+21°=90°,
解得:x=23°.
故答案为:23°.
点睛:本题考查了矩形的性质、平行线的性质、直角三角形的性质、三角形的外角性质;熟练掌握矩形的性质和平行线的性质是解决问题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1),理由见解析;(2)①见解析;②,理由见解析.
【解析】
(1)分别过点C,D,作CG⊥AB,DH⊥AB,垂足为G,H,则∠CGA=∠DHB=90°,根据△ABC与△ABD的面积相等,证明AB与CD的位置关系;
(2)连结MF,NE,设点M的坐标为(x1,y1),点N的坐标为(x2,y2),进一步证明S△EFM=S△EFN,结合(1)的结论即可得到MN∥EF;
(3)连接FM、EN、MN,结合(2)的结论证明出MN∥EF,GH∥MN,于是证明出EF∥GH.
【详解】
(1)如图1,分别过点、作、,垂足分别为、,
则,
∴,
∵且,
,
∴,
∴四边形为平行四边形,
∴;
(2)①如图2,连接,,
设点的坐标为,点的坐标为,
∵点,在反比例函数的图像上,
∴,.
∵轴,轴,且点,在第一象限,
∴,,,.
∴,,
∴,
从而,由(1)中的结论可知:;
②如图
,
理由:连接,,
设点的坐标为,点的坐标为,
由(2)①同理可得:
,,
∴,
从而,由(1)中的结论可知:.
本题主要考查反比例函数的综合题,解答本题的关键是根据同底等高的两个三角形面积相等进行解答问题,此题难度不是很大,但是三问之间都有一定的联系.
15、(1)详情见解析;(2)①15°,②
【解析】
(1)通过证明△ABD≅△ACE进一步求证即可;
(2)①连接AF、AG,利用直角三角形斜边的中线等于斜边的一半求出AF=BD=BF,AG=CE=GC,由此进一步证明△AFG为等边三角形,最后利用△ABF≅△ACG进一步求解即可;②连接BC,再连接EF、DG并延长分别交BC于点M、N,首先根据题意求得BM=DE=NC,然后利用△ABC~△AED进一步求解即可.
【详解】
(1)在△ABD与△ACE中,
∵AB=AC,∠A=∠A,AD=AE,
∴△ABD≅△ACE(SAS),
∴BD=CE;
(2)①连接AF、AG,
∵AF、AG分别为Rt△ABD、Rt△ACE的斜边中线,
∴AF=BD=BF,AG=CE=GC,
又∵BD=CE,FG=BD,
∴AF=AG=FG,
∴△AFG为等边三角形,
易证△ABF≅△ACG(SSS),
∴∠BAF=∠B=∠C=∠CAG,
∴∠C=15°;
②连接BC、DE,再连接EF、DG并延长分别交BC于点M、N,
∵△ABC与△AED都是等腰直角三角形,
∴DE∥BC,
∵F、G分别是BD、CE的中点,
∴易证△DEF≅△BMF,△DEG≅△NCG(ASA),
∴BM=DE=NC,
若四边形DEFG为矩形,则DE=FG=MN,
∴,
∵DE∥BC,
∴△ABC~△AED,
∴,
∵AC=4,
∴AD=,
∴当AD的长为时,四边形DEFG为矩形.
本题主要考查了全等三角形性质与判定和相似三角形性质与判定及直角三角形性质和矩形性质的综合运用,熟练掌握相关概念是解题关键.
16、(1)25%,图形见解析;(2)5.3,5,5;(3)540名
【解析】
(1)用1减去其他人数所占的百分比即可得到a的值,再计算出样本总数,用样本总数×a的值即可得出“引体向上达6个”的人数;
(2)根据平均数、众数与中位数的定义求解即可;
(3)先求出样本中得满分的学生所占的百分比,再乘以1200即可.
【详解】
(1)由题意可得,
,
样本总数为:,
做6个的学生数是,
条形统计图补充如下:
(2)由补全的条形图可知,
样本数据的平均数,
∵引体向上5个的学生有60人,人数最多,
∴众数是5,
∵共200名同学,排序后第100名与第101名同学的成绩都是5个,
∴中位数为;
(3)该区体育中考中选报引体向上的男生能获得满分的有:
(名),
即该区体育中考中选报引体向上的男生能获得满分的有540名.
本题主要考查了众数,用样本估计总体,扇形统计图,条形统计图,中位数,平均数,掌握众数,用样本估计总体,扇形统计图,条形统计图,中位数,平均数是解题的关键.
17、,-.
【解析】
本题的关键是正确进行分式的通分、约分,并准确代值计算.在-3
相关试卷
这是一份2024年深圳龙文数学九上开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年福建省福州市三牧中学数学九年级第一学期开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年福建省福州市名校九上数学开学质量跟踪监视试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。