|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年浙江省金华市义乌市九年级数学第一学期开学联考模拟试题【含答案】
    立即下载
    加入资料篮
    2024年浙江省金华市义乌市九年级数学第一学期开学联考模拟试题【含答案】01
    2024年浙江省金华市义乌市九年级数学第一学期开学联考模拟试题【含答案】02
    2024年浙江省金华市义乌市九年级数学第一学期开学联考模拟试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年浙江省金华市义乌市九年级数学第一学期开学联考模拟试题【含答案】

    展开
    这是一份2024年浙江省金华市义乌市九年级数学第一学期开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列命题的逆命题能成立的有( )
    ①两条直线平行,内错角相等;②如果两个实数相等,那么它们的绝对值相等;③全等三角形的对应角相等;④在角的内部,到角的两边距离相等的点在角的平分线上.
    A.4个B.3个C.2个D.1个
    2、(4分)以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( )
    A.B.C.D.
    3、(4分)如图,在矩形ABCD中,AB=8,BC=6,EF经过对角线的交点O,则图中阴影部分的面积是( )
    A.6B.12C.15D.24
    4、(4分)某服装制造厂要在开学前赶制套校服,为了尽快完成任务,厂领导合理调配加强第一线人力,使每天完成的校服比原计划多,结果提前天完成任务,问:原计划每天能完成多少套校服?设原来每天完成校服套,则可列出方程( )
    A.B.
    C.D.
    5、(4分)若y关于x的函数y=(m-2)x+n是正比例函数,则m,n应满足的条件是( )
    A.m≠2且n=0B.m=2且n=0C.m≠2D.n=0
    6、(4分)如图,已知△ABC和△PBD都是正方形网格上的格点三角形(顶点为网格线的交点),要使ΔABC∽ΔPBD,则点P的位置应落在
    A.点上B.点上C.点上D.点上
    7、(4分)某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学均时间是( )
    A.4B.3C.2D.1
    8、(4分)下列运算正确的是( )
    A.B.=1
    C.D..
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)多项式分解因式的结果是______.
    10、(4分)若x-y=,xy=,则代数式(x-1)(y+1)的值等于_____.
    11、(4分)如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是______.
    12、(4分)计算:(−)2=________;=_________.
    13、(4分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集是_____________。
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,△ABC中,∠ABC=90°,AB=1,BC=2,将线段BC绕点C顺时旋转90°得到线段CD,连接AD.
    (1)说明△ACD的形状,并求出△ACD的面积;
    (2)把等腰直角三角板按如图2的方式摆放,顶点E在CB边上,顶点F在DC的延长线上,直角顶点与点C重合.从A,B两题中任选一题作答:
    A .如图3,连接DE,BF,
    ①猜想并证明DE与BF之间的关系;②将三角板绕点C逆时针旋转α(0°<α<90°),直接写出DE与BF之间的关系.
    B .将图2中的三角板绕点C逆时针旋转α(0<α<360°),如图4所示,连接BE,DF,连接点C与BE的中点M,
    ①猜想并证明CM与DF之间的关系;②当CE=1,CM=时,请直接写出α的值.
    15、(8分)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;
    (2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.
    (3)运用(1)(2)解答中所积累的经验和知识,完成下列两题:
    ①如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,则DE= .
    ②如图4,在△ABC中,∠BAC=45°,AD⊥BC,且BD=2,AD=6,求△ABC的面积.
    16、(8分)已知:如图,四边形中,、、、分别为、、和的中点,且.
    求证:和互相垂直且平分.

    17、(10分)如图,在正方形网格中每个小正方形的边长为1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:
    (1)在图(1)网格中画出长为的线段AB.
    (2)在图(2)网格中画出一个腰长为,面积为3的等腰
    18、(10分)甲、乙两台机床同时生产一种零件,在5天中,两台机床每天出次品的数量如下表,
    请根据上述数据判断,在这5天中,哪台机床出次品的波动较小?并说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)七边形的内角和是__________.
    20、(4分)矩形的一边长是3.6㎝, 两条对角线的夹角为60º,则矩形对角线长是___________.
    21、(4分)将一副三角尺如图所示叠放在一起,若AB=8cm,则阴影部分的面积是_____cm1.
    22、(4分)在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是_____.
    23、(4分)某种数据方差的计算公式是,则该组数据的总和为_________________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知点分别在菱形的边上滑动(点不与重合),且.
    (1)如图1,若,求证:;
    (2)如图2,若与不垂直,(1)中的结论还成立吗?若成立,请证明,若不成立,说明理由;
    (3)如图3,若,请直接写出四边形的面积.
    25、(10分)三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:
    (1)写出男生鞋号数据的平均数,中位数,众数;
    (2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?
    26、(12分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示
    (1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;
    (2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;
    (3)求两人相遇的时间.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    写出各个命题的逆命题后判断真假即可.
    【详解】
    解:①两条直线平行,内错角相等的逆命题是内错角相等,两直线平行,成立;
    ②如果两个实数相等,那么它们的绝对值相等的逆命题是绝对值相等的两个实数相等,不成立;
    ③全等三角形的对应角相等的逆命题为对应角相等的三角形全等,不成立;
    ④在角的内部,到角的两边距离相等的点在角的平分线上的逆命题是角平分线上的点到角的两边的距离相等,成立,
    成立的有2个,
    故选:C.
    考查了命题与定理的知识,解题的关键是能够写出一个命题的逆命题,难度不大.
    2、B
    【解析】
    根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,只有选项B符合条件.故选B.
    3、B
    【解析】
    试题解析:在△AOE和△COF中,
    ∠EAO=∠FCO,AO=CO,∠COF=∠EOA,
    ∴△AOE≌△COF,则△AOE和△COF面积相等,
    ∴阴影部分的面积与△CDO的面积相等,
    又∵矩形对角线将矩形分成面积相等的四部分,
    ∴阴影部分的面积为=1.
    故选B.
    考点:矩形的性质.
    4、C
    【解析】
    由实际每天完成的校服比原计划多得到实际每天完成校服x(1+20%)套,再根据提前4天完成任务即可列出方程.
    【详解】
    ∵原来每天完成校服套,实际每天完成的校服比原计划多,
    ∴实际每天完成校服x(1+20%)套,
    由题意得,
    故选:C.
    此题考查分式方程的实际应用,正确理解题意是解题的关键.
    5、A
    【解析】
    试题解析:若y关于x的函数是正比例函数,

    解得:
    故选A.
    6、B
    【解析】
    由图可知∠BPD一定是钝角,若要△ABC∽△PBD,则PB、PD与AB、AC的比值必须相等,可据此进行判断.
    【详解】
    解:由图知:∠BAC是钝角,又△ABC∽△PBD,
    则∠BPD一定是钝角,∠BPD=∠BAC,
    又BA=1,AC=1,
    ∴BA:AC=1:,
    ∴BP:PD=1:或BP:PD=:1,
    只有P1符合这样的要求,故P点应该在P1.
    故选B.
    此题考查了相似三角形的性质,以及勾股定理的运用,相似三角形的对应角相等,对应边成比例,书写相似三角形时,对应顶点要对应.熟练掌握相似三角形的性质是解本题的关键
    7、B
    【解析】
    根据题意得:(1×1+2×2+4×3+2×4+1×5)÷10=3(小时),
    答:这10名学生周末学均时间是3小时;
    故选B.
    8、D
    【解析】
    【分析】根据二次根式加减法则进行分析.同类二次根式才可合并.
    【详解】
    A. , 不是同类二次根式,不能合并,故本选项错误;
    B. =,故本选项错误;
    C. ,不是同类二次根式,不能合并,故本选项错误;
    D. . 故本选项正确.
    故选:D
    【点睛】本题考核知识点:二次根式的加减.解题关键点:合并同类二次根式.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    先提出公因式a,再利用平方差公式因式分解.
    【详解】
    解:a3-4a=a(a2-4)=a(a+2)(a-2).
    故答案为a(a+2)(a-2).
    本题考查提公因式法和公式法进行因式分解,解题的关键是熟记提公因式法和公式法.
    10、2-2
    【解析】
    解:
    ∵=,
    原式
    故答案为:
    11、菱形
    【解析】
    由条件可知AB∥CD,AD∥BC,再证明AB=BC,即可解决问题.
    【详解】
    过点D作DE⊥AB于E,DF⊥BC于F.
    ∵两把直尺的对边分别平行,即:AB∥CD,AD∥BC,
    ∴四边形ABCD是平行四边形,
    ∵两把直尺的宽度相等,
    ∴DE=DF.
    又∵平行四边形ABCD的面积=AB•DE=BC•DF,
    ∴AB=BC,
    ∴平行四边形ABCD为菱形.
    故答案为:菱形.
    本题主要考查菱形的判定定理,添加辅助线,利用平行四边形的面积法证明平行四边形的邻边相等,是解题的关键.
    12、5 π-1
    【解析】
    根据二次根式的性质计算即可.
    【详解】
    解:.
    故答案为:5,π-1.
    本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.
    13、x<
    【解析】
    先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.
    【详解】
    解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),
    ∴3=2m,
    解得m,
    ∴点A的坐标是(,3),
    ∴不等式2x<ax+4的解集为x<.
    此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    三、解答题(本大题共5个小题,共48分)
    14、(1)△ACD是等腰三角形,;(2)A①DE=BF,DE⊥BF,见解析;②DE=BF,DE⊥BF.
    【解析】
    (1)过点A作AE⊥CD于点E,则∠AEC=∠AED=90°.可证四边形ABCE是矩形,从而AE=BC=2,AB=CE=1,可得AE垂直平分CD,从而△ACD是等腰三角形;再根据三角形的面积公式计算即可;
    (2)A.①根据“SAS”可证△BCF≌△DCE,从而DE=BF,∠CBF=∠CDE,延长DE交BF于点H,由∠DEC+∠CDE=90°,可证∠BEH+∠CBF=90°,所以∠BHE=90°,即DE⊥BF;
    ②证明方法同①;
    B. ①延长MC交DF于点N,延长CM至点G,使CM=MG,连接EG,根据“SAS”证明△MEG≌△MBC,从而BC=GE, BC∥GE,然后再证明△ECG≌△CFD,可得CG=DF,∠ECG=∠CFD,进而可证明结论成立;
    ②作FH⊥DC,交DC的延长线与点H,设FH=x,CH=y.由勾股定理列方程组求出x与y的值,根据含30°角的直角三角形的性质可知∠FCH =30°,进而可求α=60°或300°.
    【详解】
    △ACD是等腰三角形,理由如下:
    过点A作AE⊥CD于点E,则∠AEC=∠AED=90°.
    又∵∠ABC=90°,∠BCE=90°,
    ∴四边形ABCE是矩形,∴AE=BC=2,AB=CE=1,∴CD=1,
    ∴AE垂直平分CD,∴AC=AD,
    ∴△ACD是等腰三角形,

    (2)A:
    ①DE=BF,DE⊥BF.理由如下:
    由旋转可知,BC=CD=2,∠BCD=90°,
    ∵等腰直角△CEF顶点E在CB边上,顶点F在DC的延长线上,
    ∴CE=CF,∠BCF=∠DCE=90°.
    在△BCF和△DCE中,BC=DC,∠BCF=∠DCE,CF=CE,
    ∴△BCF≌△DCE(SAS),∴DE=BF,∠CBF=∠CDE,
    延长DE交BF于点H,
    ∵∠DEC+∠CDE=90°,∠DEC=∠BEH,∴∠BEH+∠CBF=90°,
    ∴∠BHE=90°,∴DE⊥BF;
    ②DE=BF,DE⊥BF.证明方法同①;
    B:①CM=DF,CM⊥DF.理由如下:
    延长MC交DF于点N,延长CM至点G,使CM=MG,连接EG,
    ∵M是BE的中点,∴ME=MB.
    在△MEG和△MBC中,ME=MB,∠EMG=∠BMC,MG=MC,
    ∴△MEG≌△MBC(SAS),∴CM=MG=CG,BC=GE, BC∥GE,
    ∵BC=CD,∴EG=CD.
    由旋转得∠BCE=α,
    ∵BC∥GE,∴∠CEG=180°-α,
    ∵∠DCF=360°-∠ECF-∠BCE-∠BCD=180°-α,
    ∴∠CEG=∠DCF,
    在△ECG和△CFD中,CE=CF,∠CEG=∠DCF,∠CEG=∠DCF,
    ∴△ECG≌△CFD(SAS),∴CG=DF,∠ECG=∠CFD,
    ∵MG=MC,∴MC=DF ,
    ∵∠ECF=90°,∴∠ECG+∠FCN=∠FCD+∠FCN=90°,
    ∴∠CNF=90°,∴DE⊥BF;
    ②作FH⊥DC,交DC的延长线与点H,设FH=x,CH=y.
    ∵CM=,∴DF=CG=,
    ∴,解之得.
    ∴FH=CF,
    ∴∠FCH =30°,∴∠FCD=120°,∴∠BCE=60°,
    ∴α=60°或300°.
    本题考查了旋转的性质,矩形的判定与性质,线段垂直平分线的判定与性质,全等三角形的判定与性质,勾股定理,含30°角的直角三角形的性质,以及分类讨论的数学思想,正确作出辅助线是解答本题的关键.
    15、(1)见解析;(2)见解析;(4)①DE=4;②△ABC的面积是1.
    【解析】
    (1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;
    (2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;
    (4)①过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;
    ②作∠EAB=∠BAD,∠GAC=∠DAC,过B作AE的垂线,垂足是E,过C作AG的垂线,垂足是G,BE和GC相交于点F,BF=2-2=4,设GC=x,则CD=GC=x,FC=2-x,BC=2+x.在直角△BCF中利用勾股定理求得CD的长,则三角形的面积即可求解.
    【详解】
    (1)证明:如图1,在正方形ABCD中,
    ∵BC=CD,∠B=∠CDF,BE=DF,
    ∴△CBE≌△CDF,
    ∴CE=CF;
    (2)证明:如图2,延长AD至F,使DF=BE,连接CF,
    由(1)知△CBE≌△CDF,
    ∴∠BCE=∠DCF.
    ∴∠BCE+∠ECD=∠DCF+∠ECD
    即∠ECF=∠BCD=90°,
    又∵∠GCE=45°,∴∠GCF=∠GCE=45°,
    ∵CE=CF,∠GCE=∠GCF,GC=GC,
    ∴△ECG≌△FCG,
    ∴GE=GF,
    ∴GE=DF+GD=BE+GD;
    (4)①过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.
    AE=AB﹣BE=12﹣4=8,
    设DF=x,则AD=12﹣x,
    根据(2)可得:DE=BE+DF=4+x,
    在直角△ADE中,AE2+AD2=DE2,则82+(12﹣x)2=(4+x)2,
    解得:x=2.
    则DE=4+2=4.
    故答案是:4;
    ②作∠EAB=∠BAD,∠GAC=∠DAC,过B作AE的垂线,垂足是E,过C作AG的垂线,垂足是G,BE和GC相交于点F,则四边形AEFG是正方形,且边长=AD=2,BE=BD=2,
    则BF=2﹣2=4,设GC=x,则CD=GC=x,FC=2﹣x,BC=2+x.
    在直角△BCF中,BC2=BF2+FC2,
    则(2+x)2=42+x2,
    解得:x=4.
    则BC=2+4=5,
    则△ABC的面积是:AD•BC=×2×5=1.
    本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.
    16、见解析.
    【解析】
    本题利用三角形的中位线定理得到了EH=EF=FG=GH,继而由“菱形的对角线互相垂直”得到结论.
    【详解】
    证明:在△ABD中,
    ∵、分别为AD、BD的中点,
    ∴, ,
    同理:在△ABC中,,
    在△BDC中,,
    ∴,
    ∴四边形EFGH为平行四边形

    ∴EF=FG
    ∴四边形EFGH是菱形
    ∴EG和FH互相垂直平分
    本题考查了三角形中位线定理和菱形的判定,解题的关键是利用三角形中位线定理得到证明菱形的条件.
    17、(1)见解析;(2)见解析.
    【解析】
    (1)根据勾股定理可得直角边长为2和1的直角三角形斜边长为;
    (2)根据勾股定理可得直角边长为3和1的直角三角形斜边长为,再根据面积为3确定△DEF.
    【详解】
    解如图所示
    图(1) 图(2)
    此题主要考查了勾股定理的应用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
    18、乙机床出次品的波动较小,理由见解析.
    【解析】
    根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    【详解】
    解:乙机床出次品的波动较小,
    ∵甲,乙,
    ∴甲.
    乙,
    由甲乙知,乙机床出次品的波动较小.
    本题考查了平均数和方差,一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、900°
    【解析】
    由n边形的内角和是:180°(n−2),将n=7代入即可求得答案.
    【详解】
    解:七边形的内角和是:180°×(7−2)=900°.
    故答案为:900°.
    此题考查了多边形的内角和公式.此题比较简单,注意熟记公式:n边形的内角和为180°(n−2)实际此题的关键.
    20、7.2cm或cm
    【解析】
    ①边长3.6cm为短边时,
    ∵四边形ABCD为矩形,
    ∴OA=OB,
    ∵两对角线的夹角为60°,
    ∴△AOB为等边三角形,
    ∴OA=OB=AB=3.6cm,
    ∴AC=BD=2OA=7.2cm;
    ②边长3.6cm为长边时,
    ∵四边形ABCD为矩形
    ∴OA=OB,
    ∵两对角线的夹角为60°,
    ∴△AOB为等边三角形,
    ∴OA=OB=AB,BD=2OB,∠ABD=60°,
    ∴OB=AB= ,
    ∴BD=;
    故答案是:7.2cm或cm.
    21、2
    【解析】
    根据含30度角的直角三角形的性质求出AC的长,然后证明∠AFC=45°,得到CF的长,再利用三角形面积公式计算即可.
    【详解】
    解:∵∠B=30°,∠ACB=90°,∠E=90°,AB=2cm,
    ∴AC=4cm,BC∥ED,
    ∴∠AFC=∠D=45°,
    ∴AC=CF=4cm,
    ∴阴影部分的面积=×4×4=2(cm1),
    故答案为:2.
    本题考查了含30度角的直角三角形的性质,求出AC=CF=4cm是解答此题的关键.
    22、2+
    【解析】
    试题分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.
    ∵PE⊥AB,AB=2,半径为2,
    ∴AE=AB=,PA=2, 根据勾股定理得:PE=1,
    ∵点A在直线y=x上,
    ∴∠AOC=45°,
    ∵∠DCO=90°,
    ∴∠ODC=45°,
    ∴△OCD是等腰直角三角形,
    ∴OC=CD=2,
    ∴∠PDE=∠ODC=45°,
    ∴∠DPE=∠PDE=45°,
    ∴DE=PE=1,
    ∴PD=
    ∵⊙P的圆心是(2,a),
    ∴a=PD+DC=2+.
    本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中.本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45°,这一个条件的应用也是很重要的.
    23、32
    【解析】
    根据方差公式可知这组数据的样本容量和平均数,即可求出这组数据的总和.
    【详解】
    ∵数据方差的计算公式是,
    ∴样本容量为8,平均数为4,
    ∴该组数据的总和为8×4=32,
    故答案为:32
    本题考查方差及平均数的意义,一般地,设n个数据,x1、x2、…xn的平均数为x,则方差s2=[(x1-x)2+(x2-x)2+…+(xn-x)2],平均数是指在一组数据中所有数据之和再除以数据的个数.
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(2)(1)中的结论还成立,证明见解析;(3)四边形的面积为.
    【解析】
    (1)根据菱形的性质及已知,得到,再证,
    根据三角形全等的性质即可得到结论;
    (2)作,垂足分别为点,证明,根据三角形全等的性质即可得到结论;
    (3)根据菱形的面积公式,结合(2)的结论解答.
    【详解】
    解:(1)∵四边形是菱形,
    ∴,.
    ∵,∴,
    ∴.
    ∵,∴,∴.
    在和中,,
    ∴,
    ∴.
    (2)若与不垂直,(1)中的结论还成立证明如下:
    如图,作,垂足分别为点.
    由(1)可得,
    ∴,
    在和中,,
    ∴,∴.
    (3)如图,连接交于点.
    ∵,∴为等边三角形,
    ∵,∴,同理,,
    ∴四边形的面积四边形的面积,
    由(2)得四边形的面积四边形AECF的面积
    ∵,
    ∴,,
    ∴四边形的面积为,
    ∴四边形的面积为.
    本题主要考查全等三角形的性质和判定,菱形的性质的应用.主要考查学生的推理能力,证明三角形全等是解题的关键.
    25、(1)平均数是24.11,中位数是24.1,众数是21;(2)厂家最关心的是众数.
    【解析】
    (1)根据“平均数、中位数和众数的定义及确定方法”结合表中的数据进行分析解答即可;
    (2)根据“平均数、中位数和众数的统计意义”进行分析判断即可.
    【详解】
    解:(1)由题意知:男生鞋号数据的平均数==24.11;
    男生鞋号数据的众数为21;
    男生鞋号数据的中位数==24.1.
    ∴平均数是24.11,中位数是24.1,众数是21.
    (2)∵在平均数、中位数和众数中,众数代表的是销售量最大的鞋号,
    ∴厂家最关心的是众数.
    本题考查求平均数、众数、中位数.熟知:“平均数、中位数和众数的定义及各自的统计意义”是解答本题的关键.
    26、(1)家与图书馆之间路程为4000m,小玲步行速度为100m/s;(2)自变量x的范围为0≤x≤;(3)两人相遇时间为第8分钟.
    【解析】
    (1)认真分析图象得到路程与速度数据;
    (2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;
    (3)两人相遇实际上是函数图象求交点.
    【详解】
    解:(1)结合题意和图象可知,线段CD为小东路程与时间函数图象,折现O﹣A﹣B为小玲路程与时间图象
    则家与图书馆之间路程为4000m,小玲步行速度为(4000-2000)÷(30-10)=100m/s
    (2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,
    ∴他离家的路程y=4000﹣300x,
    自变量x的范围为0≤x≤,
    (3)由图象可知,两人相遇是在小玲改变速度之前,
    ∴4000﹣300x=200x
    解得x=8
    ∴两人相遇时间为第8分钟.
    故答案为(1)4000,100;(2)y=4000﹣300x,0≤x≤;(3)第8分钟.
    本题考查了一次函数的应用,解决本题的关键是能从函数的图象中获取相关信息.
    题号





    总分
    得分

    1
    0
    4
    2
    3

    3
    2
    1
    2
    2
    鞋号
    23.5
    24
    24.5
    25
    25.5
    26
    人数
    3
    4
    4
    7
    1
    1
    相关试卷

    2024年浙江省金华市义乌市宾王中学数学九年级第一学期开学学业水平测试试题【含答案】: 这是一份2024年浙江省金华市义乌市宾王中学数学九年级第一学期开学学业水平测试试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年浙江省金华市金东区数学九年级第一学期开学联考试题【含答案】: 这是一份2024年浙江省金华市金东区数学九年级第一学期开学联考试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年浙江省义乌市七校数学九年级第一学期开学复习检测模拟试题【含答案】: 这是一份2024-2025学年浙江省义乌市七校数学九年级第一学期开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map