|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年武威市重点中学九年级数学第一学期开学监测试题【含答案】
    立即下载
    加入资料篮
    2024年武威市重点中学九年级数学第一学期开学监测试题【含答案】01
    2024年武威市重点中学九年级数学第一学期开学监测试题【含答案】02
    2024年武威市重点中学九年级数学第一学期开学监测试题【含答案】03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年武威市重点中学九年级数学第一学期开学监测试题【含答案】

    展开
    这是一份2024年武威市重点中学九年级数学第一学期开学监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)以下列各组数为边长首尾相连,能构成直角三角形的一组是( )
    A.4,5,6B.1,,2C.5,12,15D.6,8,14
    2、(4分)已知矩形ABCD如图,AB=3,BC=4,AE平分∠BAD交BC于点E,点F、G分别为AD、AE的中点,则FG=( )
    A.B.C.2D.
    3、(4分)下列各组线段a、b、c中不能组成直角三角形的是( )
    A.a=8,b=15,c=17B.a=7,b=24,c=25
    C.a=40,b=50,c=60D.a=,b=4,c=5
    4、(4分)如图,正方形ABCD,点E、F分别在AD,CD上,BG⊥EF,点G为垂足,AB=5,AE=1,CF=2,则BG的长为( )
    A.B.5C.D.
    5、(4分)若平行四边形中两个内角的度数比为1:2,则其中较小的内角是( )。
    A.60°B.90°C.120°D.45°
    6、(4分)一元二次方程的根的情况是( )
    A.有两个不相等的实数根B.有两个相等的实数根
    C.只有一个实数根D.没有实数根
    7、(4分)无理数+1在两个整数之间,下列结论正确的是( )
    A.2-3之间B.3-4之间C.4-5之间D.5-6之间
    8、(4分)在平面直角坐标系中,点位于
    A.第一象限B.第二象限C.第三象限D.第四象限
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)反比例函数y=的图像在其每一象限内,y随x的增大而减小,则k的值可以是______.(写出一个数值即可)
    10、(4分)平行四边形的面积等于,两对角线的交点为,过点的直线分别交平行四边形一组对边、于点、,则四边形的面积等于________。
    11、(4分)已知数据,-7,, ,-2017,其中出现无理数的频率是________________.
    12、(4分)分解因式:=_________________________.
    13、(4分)已知,点P在轴上,则当轴平分时,点P的坐标为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足.
    求证:AP=EF.
    15、(8分)有一次,小明坐着轮船由A点出发沿正东方向AN航行,在A点望湖中小岛M,测得∠MAN=30°,航行100米到达B点时,测得∠MBN=45°,你能算出A点与湖中小岛M的距离吗?
    16、(8分)如图,正方形ABCD的边长为4,E是线段AB延长线上一动点,连结CE.
    (1)如图1,过点C作CF⊥CE交线段DA于点F.
    ①求证:CF=CE;
    ②若BE=m(0<m<4),用含m的代数式表示线段EF的长;
    (2)在(1)的条件下,设线段EF的中点为M,探索线段BM与AF的数量关系,并用等式表示.
    (3)如图2,在线段CE上取点P使CP=2,连结AP,取线段AP的中点Q,连结BQ,求线段BQ的最小值.
    17、(10分)如图,在中,点分别在边上,已知,.求证:四边形是平行四边形.
    18、(10分)某商品的进价为每件40元,售价每件不低于60元且不高于80元,当售价为每件60元时,每个月可卖出100件;经调查发现,每件商品每上涨1元,每月少卖出2件.设每件商品的售价为x元(x为正整数).
    (1)求每个月的销售利润;(用含有x代数式表示)
    (2)若每个月的利润为2250元,定价应为多少元?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,它是个数值转换机,若输入的a值为,则输出的结果应为____.
    20、(4分)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为,,,点P在BC(不与点B、C重合)上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为______.

    21、(4分)如图,在ABCD中,∠A=45°,BC=2,则AB与CD之间的距离为________ .
    22、(4分)今有三部自动换币机,其中甲机总是将一枚硬币换成2枚其他硬币;乙机总是将一枚硬币换成4枚其他硬币;丙机总是将一枚硬币换面10枚其他硬币.某人共进行了12次换币,便将一枚硬币换成了81枚.试问他在丙机上换了_____次?
    23、(4分)已知矩形,给出三个关系式:①②③如果选择关系式__________作为条件(写出一个即可),那么可以判定矩形为正方形,理由是_______________________________ .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知是等边三角形,点在边上,是以为边的等边三角形,过点作的平行线交线段于点,连接。
    求证:(1);
    (2)四边形是平行四边形。
    25、(10分)如图抛物线y=x2+bx﹣c经过直线y=x﹣3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.
    (1)求此抛物线的解析式;
    (2)求S△ABC的面积.
    26、(12分)如图,在中,于点E点,延长BC至F点使,连接AF,DE,DF.
    (1)求证:四边形AEFD是矩形;
    (2)若,,,求AE的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
    【详解】
    解:A、,可知其不能构成直角三角形;
    B、,可知其能构成直角三角形;
    C、,可知其不能构成直角三角形;
    D、,可知其不能构成直角三角形;
    故选择:B.
    本题主要考查了勾股定理的逆定理的运用,解题时注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.
    2、D
    【解析】
    由AE平分∠BAD得∠BAE=∠DAE,根据矩形ABCD可得△ABE是等腰直角三角形,所以BE=AB=3,从而可求EC=1,连接DE,由勾股定理得DE的长,再根据三角形中位线定理可求FG的长.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴∠DAE=∠BEA,
    ∵AE平分∠BAD
    ∴∠DAE=∠BAE,
    ∴∠BAE=∠BEA,
    ∴AB=BE=3,
    ∵BC=AD=4,
    ∴EC=1,
    连接DE,如图,
    ∴DE=,
    ∵点F、G分别为AD、AE的中点,
    ∴FG=.
    故选D.
    本题考查了矩形的性质以及三角形中位线定理,熟记性质与定理是解题关键.
    3、C
    【解析】
    这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
    【详解】
    解:、因为,所以能组成直角三角形;
    、因为,所以能组成直角三角形;
    、因为,所以不能组成直角三角形;
    、因为,所以能组成直角三角形.
    故选:C.
    本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
    4、C
    【解析】
    如图,连接BE、BF.首先利用勾股定理求出EF,再根据S△BEF=•EF•BG=S正方形ABCD-S△ABE-S△BCF-S△DEF,列出方程即可解决问题.
    【详解】
    如图,连接BE、BF.
    ∵四边形ABCD是正方形,
    ∴AB=BC=CD=AD=5,
    ∵AE=1,CF=2,
    ∴DE=4,DF=3,
    ∴EF==5,
    ∵S△BEF=•EF•BG=S正方形ABCD-S△ABE-S△BCF-S△DEF,
    ∴•5•BG=25-•5•1-•5•2-•3•4,
    ∴BG=,
    故选C.
    本题考查正方形的性质、勾股定理,三角形的面积等知识,解题的关键是学会添加常用辅助线,学会利用分割法求三角形面积,学会构建方程解决问题,属于中考常考题型.
    5、A
    【解析】
    首先设平行四边形中两个内角的度数分别是x°,2x°,由平行四边形的邻角互补,即可得方程x+2x=180,继而求得答案.
    【详解】
    设平行四边形中两个内角的度数分别是x°,2x°,
    则x+2x=180,
    解得:x=60,
    ∴其中较小的内角是:60°.
    故选A.
    此题考查平行四边形的性质,解题关键在于利用平行四边形的邻角互补.
    6、D
    【解析】
    直接计算根的判别式,然后根据判别式的意义判断根的情况
    【详解】
    解:
    所以方程无实数根
    故选:D
    本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
    7、B
    【解析】
    先找出和相邻的两个整数,然后再求+1在哪两个整数之间
    【详解】
    解:∵22=1,32=9,
    ∴2<<3;
    ∴3<+1<1.
    故选:B.
    此题主要考查了无理数的估算能力,需掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.
    8、C
    【解析】
    根据第三象限内的点的横坐标小于零,纵坐标小于零,可得答案.
    【详解】
    解:在平面直角坐标系中,点位于第三象限,
    故选:.
    本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    ∵反比例函数y=的图象在每一象限内,y随x的增大而减小,
    ∴,解得.
    ∴k可取的值很多,比如:k=1.
    10、
    【解析】
    根据“过平行四边形对角线的交点的直线将平行四边形等分为两部分”解答即可.
    【详解】
    如图平行四边形ABCD,
    ∵四边形ABCD是平行四边形,
    ∴OD=OB,OA=OC,
    则可得:△DF0≌△BEO,△ADO≌△CBO,△CF0≌△AEO,
    ∴直线l将四边形ABCD的面积平分.
    ∵平行四边形ABCD的面积等于10cm2,
    ∴四边形AEFD的面积等于5cm2,
    故答案为:5cm2
    本题考查了中心对称,全等三角形的判定与性质,解答本题的关键在于举例说明,利用全等的知识解决.
    11、0.6
    【解析】
    用无理数的个数除以总个数即可.
    【详解】
    ∵数据,-7,, ,-2017中无理数有, ,共3个,
    ∴出现无理数的频率是3÷5=0.6.
    故答案为:0.6.
    本题考查了无理数的定义,以及频率的计算,熟练运用频率公式计算是解题的关键.频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷总数
    12、.
    【解析】
    试题分析:==.
    故答案为.
    考点:提公因式法与公式法的综合运用.
    13、
    【解析】
    作点A关于y轴对称的对称点,求出点的坐标,再求出直线的解析式,将代入直线解析式中,即可求出点P的坐标.
    【详解】
    如图,作点A关于y轴对称的对称点
    ∵,点A关于y轴对称的对称点

    设直线的解析式为
    将点和点代入直线解析式中
    解得
    ∴直线的解析式为
    将代入中
    解得

    故答案为:.
    本题考查了坐标点的问题,掌握角平分线的性质、轴对称的性质、一次函数的性质是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、见试题解析
    【解析】
    试题分析:利用正方形的关于对角线成轴对称,利用轴对称的性质可得出EF=AP.
    证明:如图,连接PC,
    ∵PE⊥DC,PF⊥BC,四边形ABCD是正方形,
    ∴∠PEC=∠PFC=∠ECF=90°,
    ∴四边形PECF为矩形,
    ∴PC=EF,
    又∵P为BD上任意一点,
    ∴PA、PC关于BD对称,
    可以得出,PA=PC,所以EF=AP.
    15、A点与湖中小岛M的距离为100+100米;
    【解析】
    作MC⊥AN于点C,设AM=x米,根据∠MAN=30°表示出MC= m,根据∠MBN=45°,表示出BC=MC=m然后根据在Rt△AMC中有AM =AC+MC列出法方程求解即可.
    【详解】
    作MC⊥AN于点C,
    设AM=x米,
    ∵∠MAN=30°,
    ∴MC=m,
    ∵∠MBN=45°,
    ∴BC=MC=m
    在Rt△AMC中,
    AM=AC+MC,
    即:x=( +100) +() ,
    解得:x=100+100 米,
    答:A点与湖中小岛M的距离为100+100米。
    此题考查勾股定理的应用,解题关键在于作辅助线
    16、(1)①详见解析;②;(2)BM= AF;(3)
    【解析】
    (1)①根据正方形的性质以及余角的性质即可证明△DCF≌△BCE,再根据全等三角形对应边相等即可得出结论;
    ②根据全等三角形的性质可得DF=BE=m.在Rt△ECF中,由勾股定理即可得出结论;
    (2)在直线AB上取一点G,使BG=BE,由三角形中位线定理可得FG=2BM,可以证明AF=AG.在Rt△AFG中由勾股定理即可得出结论.
    (3)在AB的延长线上取点R,使BR=AB=4,连结PR和CR,由三角形中位线定理可得BQ=PR.在Rt△CBR中,由勾股定理即可得出CR的长,再由三角形三边关系定理即可得出结论.
    【详解】
    (1)解:①证明:∵正方形ABCD,∴BC=CD,∠DCB=∠CBE=90°.
    ∵CF⊥CE,∠FCE=90°,∴∠DCF=∠BCE,∴△DCF≌△BCE(ASA),∴CE=CF.
    ②∵△DCF≌△BCE,∴DF=BE=m,∴AF=4-m,AE=4+m,由四边形ABCD是正方形得∠A=90°,∴EF==;
    (2)解:在直线AB上取一点G,使BG=BE.
    ∵M为EF的中点,∴FG=2BM,由(1)知,DF=BE,又AD=AB,∴AF=AG.
    ∵∠A=90°,∴FG=AF,∴2BM=AF,∴BM=AF.
    (3)解:在AB的延长线上取点R,使BR=AB=4,连结PR和CR.
    ∵Q为AP的中点,∴BQ=PR.
    ∵CP=2,CR==,∴PR≥CR-CP=,∴BQ的最小值为.
    本题考查了正方形的性质以及三角形中位线定理.作出恰当的辅助线是解答本题的关键.
    17、见解析
    【解析】
    根据题意证明EF∥AB,即可解答
    【详解】
    证明:∵DE∥BC,
    ∴∠ADE=∠B.
    ∵∠ADE=∠EFC,
    ∴∠EFC=∠B.
    ∴EF∥AB,
    ∴四边形BDEF是平行四边形.
    此题考查平行四边形的判定,平行线的性质,解题关键在于证明EF∥AB
    18、(1)﹣2x2+300x﹣8800;(2)若每个月的利润为2250元,定价应为65元.
    【解析】
    (1)设每件商品的售价为x元(x为正整数),则每个月可卖出[100-2(x-60)]件,根据销售利润=每件的利润×销售数量,即可得出结论;
    (2)由(1)的结论结合每个月的利润为2250元,即可得出关于x的一元二次方程,解之取大于等于60小于等于80的值即可得出结论.
    【详解】
    (1)设每件商品的售价为x元(x为正整数),则每个月可卖出[100﹣2(x﹣60)]件,
    ∴每个月的销售利润为(x﹣40)[100﹣2(x﹣60)]=﹣2x2+300x﹣8800;
    (2)根据题意得:﹣2x2+300x﹣8800=2250,
    解得:x1=65,x2=85(不合题意,舍去).
    答:若每个月的利润为2250元,定价应为65元.
    本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据数量关系,列出代数式;(2)找准等量关系,正确列出一元二次方程.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、-
    【解析】
    [()2-4]==.
    故答案为-
    20、(1,3)或(4,3)
    【解析】
    根据△ODP是腰长为5的等腰三角形,因此要分类讨论到底是哪两条腰相等:①PD=OD为锐角三角形;②OP=OD;③OD=PD为钝角三角形,注意不重不漏.
    【详解】
    ∵C(0,3),A(9,0)
    ∴B的坐标为(9,3)
    ①当P运动到图①所示的位置时

    此时DO=PD=5
    过点P作PE⊥OA于点E,
    在RT△OPE中,根据勾股定理4
    ∴OE=OD-DE=1
    此时P点的坐标为(1,3);
    ②当P运动到图②所示的位置时
    此时DO=PO=5
    过点P作PE⊥OA于点E,
    在RT△OPE中,根据勾股定理4
    此时P点的坐标为(4,3);
    ③当P运动到图③所示的位置时
    此时OD=PD=5
    过点P作PE⊥OA于点E
    在RT△OPE中,根据勾股定理4
    ∴OE=OD+DE=9
    此时P点的坐标为(9,3),此时P点与B点重合,故不符合题意.
    综上所述,P的坐标为(1,3)或(4,3)
    本题主要考查等腰三角形的判定以及勾股定理的应用.
    21、
    【解析】
    先由平行四边形对边相等得AD=BC, 作DE⊥AE,由题意可知△ADE为等腰直角三角形,根据勾股定理可以求出DE的长度,即AB和CD之间的距离.
    【详解】
    如图,过D作DE⊥AB交AB于E,
    ∵四边形ABCD为平行四边形,∴AD=BC=2,

    △ADE为等腰直角三角形,

    根据勾股定理得 ,



    即AB和CD之间的距离为,
    故答案为:
    本题考查了平行四边形的性质,勾股定理,熟练利用勾股定理求直角三角形中线段长是解题的关键.
    22、8
    【解析】
    根据题意可知,在甲机上每换一次多1个;在乙机上每换一次多3个;在丙机上每换一次多9个;进行了12次换币就将一枚硬币换成了81枚,多了80个;找到相等关系式列出方程解答即可.
    【详解】
    解:设:在甲机换了x次.乙机换了y次.丙机换了z次.
    在甲机上每换一次多 1 个;
    在乙机上每换一次多 3 个;
    在丙机上每换一次多 9 个;
    进行了12次换币就将一枚硬币换成了81枚,多了80个;

    由②-①,得:2y+8z=68,
    ∴y+4z=34,
    ∴y=34-4z,
    结合x+y+z=12,能满足上面两式的值为:
    ∴;
    即在丙机换了8次.
    故答案为:8.
    此题关键是明白一枚硬币在不同机上换得个数不同,但是通过一枚12次取了81枚,多了80枚,找到等量关系,再根据题意解出即可.
    23、① 一组邻边相等的矩形是正方形
    【解析】
    根据正方形的判定定理添加一个条件使得矩形是菱形即可.
    【详解】
    解:∵四边形ABCD是矩形,AB=BC,
    ∴矩形ABCD为正方形(一组邻边相等的矩形是正方形).
    故答案为:①,一组邻边相等的矩形是正方形.
    本题考查了正方形的判定定理,熟练掌握正方形的判定定理即可得到结论.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)四边形是平行四边形,见解析.
    【解析】
    (1)利用有两条边对应相等并且夹角相等的两个三角形全等即可证明△AFB≌△ADC;
    (2)四边形BCEF是平行四边形,因为△AFB≌△ADC,所以可得∠ABF=∠C=60°,进而证明∠ABF=∠BAC,则可得到FB∥AC,又BC∥EF,所以四边形BCEF是平行四边形;
    【详解】
    证明:(1)∵和都是等边三角形,
    ∴,

    又∵,

    ∴,
    在和中,
    ∴;
    (2)由①得,
    ∴,
    又∵,
    ∴,
    ∴,
    又∵,
    ∴四边形是平行四边形.
    本题考查了等边三角形的性质、全等三角形的判定和性质以及平行四边形的判定,熟练掌握性质、定理是解题的关键.
    25、 (1) y=x2+2x﹣3;(2)1.
    【解析】
    (1)先根据直线y=x﹣3求出A、B两点的坐标,然后将它们代入抛物线中即可求出待定系数的值;
    (2)根据(1)中抛物线的解析式可求出C点的坐标,然后根据三角形的面积公式即可求出△ABC的面积.
    【详解】
    (1)当x=0时,y=x﹣3=﹣3,则B(0,﹣3);
    当y=0时,x﹣3=0,解得x=3,则A(3,0),
    把A(3,0),B(0,﹣3)代入y=x2+bx﹣c得,解得,
    ∴抛物线的解析式为y=x2+2x﹣3;
    (2)当y=0时,x2+2x﹣3=0,解得x1=﹣1,x2=3,则C(﹣1,0),
    ∴S△ABC=×(3+1)×3=1.
    本题主要考查了一次函数与坐标轴的交点,二次函数解析式的确定、三角形面积的求法等知识点.考查了学生数形结合的数学思想方法.
    26、(1)见解析;(2)
    【解析】
    试题分析:(1)先证明四边形AEFD是平行四边形,再证明∠AEF=90°即可.
    (2)证明△ABF是直角三角形,由三角形的面积即可得出AE的长.
    试题解析:(1)证明:∵CF=BE,
    ∴CF+EC=BE+EC.
    即 EF=BC.
    ∵在▱ABCD中,AD∥BC且AD=BC,
    ∴AD∥EF且AD=EF.
    ∴四边形AEFD是平行四边形.
    ∵AE⊥BC,
    ∴∠AEF=90°.
    ∴四边形AEFD是矩形;
    (2)∵四边形AEFD是矩形,DE=1,
    ∴AF=DE=1.
    ∵AB=6,BF=10,
    ∴AB2+AF2=62+12=100=BF2.
    ∴∠BAF=90°.
    ∵AE⊥BF,
    ∴△ABF的面积=AB•AF=BF•AE.
    ∴AE=.
    题号





    总分
    得分
    相关试卷

    2024年信阳市重点中学数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024年信阳市重点中学数学九年级第一学期开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年拉萨市重点中学九年级数学第一学期开学监测试题【含答案】: 这是一份2024年拉萨市重点中学九年级数学第一学期开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年昌都市九年级数学第一学期开学监测模拟试题【含答案】: 这是一份2024年昌都市九年级数学第一学期开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map