搜索
    上传资料 赚现金
    中考数学真题分项汇编(全国通用)专题07一元二次方程及其应用精练(原卷版+解析)
    立即下载
    加入资料篮
    中考数学真题分项汇编(全国通用)专题07一元二次方程及其应用精练(原卷版+解析)01
    中考数学真题分项汇编(全国通用)专题07一元二次方程及其应用精练(原卷版+解析)02
    中考数学真题分项汇编(全国通用)专题07一元二次方程及其应用精练(原卷版+解析)03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学真题分项汇编(全国通用)专题07一元二次方程及其应用精练(原卷版+解析)

    展开
    这是一份中考数学真题分项汇编(全国通用)专题07一元二次方程及其应用精练(原卷版+解析),共26页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。


    一、单选题
    1.(2023·四川泸州·统考中考真题)关于的一元二次方程的根的情况是( )
    A.没有实数根B.有两个相等的实数根
    C.有两个不相等的实数根D.实数根的个数与实数的取值有关
    2.(2023·天津·统考中考真题)若是方程的两个根,则( )
    A.B.C.D.
    3.(2023·广西·统考中考真题)据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x,依题意可列方程为( )
    A.B.
    C.D.
    4.(2023·黑龙江·统考中考真题)如图,在长为,宽为的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是,则小路的宽是( )

    A.B.C.或D.
    5.(2023·河南·统考中考真题)关于x的一元二次方程的根的情况是( )
    A.有两个不相等的实数根B.有两个相等的实数根
    C.只有一个实数根D.没有实数根
    6.(2023·四川眉山·统考中考真题)关于x的一元二次方程有两个不相等的实数根,则m的取值范围是( )
    A.B.C.D.
    7.(2023·新疆·统考中考真题)用配方法解一元二次方程,配方后得到的方程是( )
    A.B.C.D.
    8.(2023·四川乐山·统考中考真题)若关于x的一元二次方程两根为,且,则m的值为( )
    A.4B.8C.12D.16
    9.(2023·山东滨州·统考中考真题)一元二次方程根的情况为( )
    A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能判定
    10.(2023·全国·统考中考真题)一元二次方程根的判别式的值是( )
    A.33B.23C.17D.
    11.(2023·四川·统考中考真题)关于x的一元二次方程根的情况,下列说法中正确的是( )
    A.有两个不相等的实数根B.有两个相等的实数根
    C.没有实数根D.无法确定
    12.(2023·山东聊城·统考中考真题)若一元二次方程有实数解,则m的取值范围是( )
    A.B.C.且D.且
    13.(2023·山东·统考中考真题)一元二次方程的两根为,则的值为( )
    A.B.C.3D.
    14.(2023·内蒙古赤峰·统考中考真题)用配方法解方程时,配方后正确的是( )
    A.B.C.D.
    二、填空题
    15.(2023·湖南常德·统考中考真题)若关于的一元二次方程有两个不相等的实数根,则的取值范围是_________.
    16.(2023·湖北宜昌·统考中考真题)已知、是方程的两根,则代数式的值为_________.
    17.(2022秋·河南新乡·九年级统考期中)关于x的一元二次方程有两个不相等的实数根,则m的取值范围是_____________.
    18.(2023·四川宜宾·统考中考真题)若关于x的方程两根的倒数和为1,则m的值为___________.
    19.(2023·黑龙江绥化·统考中考真题)已知一元二次方程的两根为与,则的值为_______.
    20.(2023·重庆·统考中考真题)某新建工业园区今年六月份提供就业岗位个,并按计划逐月增长,预计八月份将提供岗位个.设七、八两个月提供就业岗位数量的月平均增长率为,根据题意,可列方程为___________.
    21.(2023·四川达州·统考中考真题)已知是方程的两个实数根,且,则的值为___________.
    22.(2023·四川遂宁·统考中考真题)若a、b是一元二次方程的两个实数根,则代数式的值为_________.
    23.(2023·四川眉山·统考中考真题)已知方程的根为,则的值为____________.
    24.(2023·湖南怀化·统考中考真题)已知关于x的一元二次方程的一个根为,则m的值为__________,另一个根为__________.
    25.(2023·甘肃武威·统考中考真题)关于的一元二次方程有两个不相等的实数根,则________(写出一个满足条件的值).
    26.(2023·上海·统考中考真题)已知关于x的一元二次方程没有实数根,那么a的取值范围是________.
    27.(2023·湖南·统考中考真题)已知关于x的方程的一个根是,则它的另一个根是________.
    28.(2023·山东枣庄·统考中考真题)若是关x的方程的解,则的值为___________.
    29.(2022春·江苏泰州·九年级校考阶段练习)已知一元二次方程x2﹣3x+1=0有两个实数根x1,x2,则x1+x2﹣x1x2的值等于_____.
    30.(2023·四川内江·统考中考真题)已知a、b是方程的两根,则___________.
    31.(2023·湖北黄冈·统考中考真题)已知一元二次方程的两个实数根为,若,则实数_____________.
    32.(2023·湖南·统考中考真题)某校截止到年底,校园绿化面积为平方米.为美化环境,该校计划年底绿化面积达到平方米.利用方程想想,设这两年绿化面积的年平均增长率为,则依题意列方程为__________.
    33.(2022秋·北京东城·九年级景山学校校考阶段练习)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是______.
    34.(2023·湖南岳阳·统考中考真题)已知关于的一元二次方程有两个不相等的实数根,且,则实数_________.
    三、解答题
    35.(2023秋·辽宁沈阳·九年级统考期末)解方程:.
    36.(2023·辽宁大连·统考中考真题)为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求年买书资金的平均增长率.
    37.(2023·湖北·统考中考真题)已知关于x的一元二次方程.
    (1)求证:无论m取何值时,方程都有两个不相等的实数根;
    (2)设该方程的两个实数根为a,b,若,求m的值.
    38.(2023·四川南充·统考中考真题)已知关于x的一元二次方程
    (1)求证:无论m为何值,方程总有实数根;
    (2)若,是方程的两个实数根,且,求m的值.
    39.(2023·浙江杭州·统考中考真题)设一元二次方程.在下面的四组条件中选择其中一组的值,使这个方程有两个不相等的实数根,并解这个方程.
    ①;②;③;④.
    注:如果选择多组条件分别作答,按第一个解答计分.
    40.(2023·湖南郴州·统考中考真题)随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.
    (1)求这两个月中该景区游客人数的月平均增长率;
    (2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?
    41.(2023·湖北荆州·统考中考真题)已知关于的一元二次方程有两个不相等的实数根.
    (1)求的取值范围;
    (2)当时,用配方法解方程.
    专题07 一元二次方程及其应用
    一、单选题
    1.(2023·四川泸州·统考中考真题)关于的一元二次方程的根的情况是( )
    A.没有实数根B.有两个相等的实数根
    C.有两个不相等的实数根D.实数根的个数与实数的取值有关
    【答案】C
    【分析】根据一元二次方程根的判别式求出,即可得出答案.
    【详解】解:∵,
    ∴关于的一元二次方程有两个不相等的实数根,故C正确.
    故选:C.
    【点睛】本题考查了根的判别式,一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.
    2.(2023·天津·统考中考真题)若是方程的两个根,则( )
    A.B.C.D.
    【答案】A
    【分析】根据一元二次方程的根与系数的关系即可得.
    【详解】解:方程中的,
    是方程的两个根,
    ,,
    故选:A.
    【点睛】本题考查了一元二次方程的根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.
    3.(2023·广西·统考中考真题)据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x,依题意可列方程为( )
    A.B.
    C.D.
    【答案】B
    【分析】设2020年至2022年全国居民人均可支配收入的年平均增长率为x,根据题意列出一元二次方程即可.
    【详解】设2020年至2022年全国居民人均可支配收入的年平均增长率为x,
    根据题意得,.
    故选:B.
    【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.
    4.(2023·黑龙江·统考中考真题)如图,在长为,宽为的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是,则小路的宽是( )

    A.B.C.或D.
    【答案】A
    【分析】设小路宽为,则种植花草部分的面积等于长为,宽为的矩形的面积,根据花草的种植面积为,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.
    【详解】解:设小路宽为,则种植花草部分的面积等于长为,宽为的矩形的面积,
    依题意得:
    解得:,(不合题意,舍去),
    ∴小路宽为.
    故选:A.
    【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
    5.(2023·河南·统考中考真题)关于x的一元二次方程的根的情况是( )
    A.有两个不相等的实数根B.有两个相等的实数根
    C.只有一个实数根D.没有实数根
    【答案】A
    【分析】对于,当, 方程有两个不相等的实根,当, 方程有两个相等的实根,, 方程没有实根,根据原理作答即可.
    【详解】解:∵,
    ∴,
    所以原方程有两个不相等的实数根,
    故选:A.
    【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键.
    6.(2023·四川眉山·统考中考真题)关于x的一元二次方程有两个不相等的实数根,则m的取值范围是( )
    A.B.C.D.
    【答案】D
    【分析】利用一元二次方程根的判别式求解即可.
    【详解】解:∵关于x的一元二次方程有两个不相等的实数根,
    ∴,
    ∴,
    故选:D.
    【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程,若,则方程有两个不相等的实数根,若,则方程有两个相等的实数根,若,则方程没有实数根.
    7.(2023·新疆·统考中考真题)用配方法解一元二次方程,配方后得到的方程是( )
    A.B.C.D.
    【答案】D
    【分析】方程两边同时加上一次项系数一半的平方即计算即可.
    【详解】∵,
    ∴,
    ∴,
    ∴,
    故选:D.
    【点睛】本题考查了配方法,熟练掌握配方法的基本步骤是解题的关键.
    8.(2023·四川乐山·统考中考真题)若关于x的一元二次方程两根为,且,则m的值为( )
    A.4B.8C.12D.16
    【答案】C
    【分析】根据一元二次方程根与系数的关系得出,然后即可确定两个根,再由根与系数的关系求解即可.
    【详解】解:∵关于x的一元二次方程两根为,
    ∴,
    ∵,
    ∴,
    ∴,
    故选:C.
    【点睛】题目主要考查一元二次方程根与系数的关系,熟练掌握此关系是解题关键.
    9.(2023·山东滨州·统考中考真题)一元二次方程根的情况为( )
    A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能判定
    【答案】A
    【分析】根据题意,求得,根据一元二次方程根的判别式的意义,即可求解.
    【详解】解:∵一元二次方程中,,
    ∴,
    ∴一元二次方程有两个不相等的实数根,
    故选:A.
    【点睛】本题考查了一元二次方程的根的判别式的意义,熟练掌握一元二次方程根的判别式的意义是解题的关键.
    10.(2023·全国·统考中考真题)一元二次方程根的判别式的值是( )
    A.33B.23C.17D.
    【答案】C
    【分析】直接利用一元二次方程根的判别式求出答案.
    【详解】解:∵,,,
    ∴.
    故选:C.
    【点睛】此题主要考查了一元二次方程的根的判别式,正确记忆公式是解题关键.
    11.(2023·四川·统考中考真题)关于x的一元二次方程根的情况,下列说法中正确的是( )
    A.有两个不相等的实数根B.有两个相等的实数根
    C.没有实数根D.无法确定
    【答案】C
    【分析】直接利用一元二次方程根的判别式即可得.
    【详解】解:,
    其中,,,
    ∴,
    ∴方程没有实数根.
    故选:C.
    【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程,若,则方程有两个不相等的实数根,若,则方程有两个相等的实数根,若,则方程没有实数根.
    12.(2023·山东聊城·统考中考真题)若一元二次方程有实数解,则m的取值范围是( )
    A.B.C.且D.且
    【答案】D
    【分析】由于关于的一元二次方程有实数根,根据一元二次方程根与系数的关系可知,且,据此列不等式求解即可.
    【详解】解:由题意得,,且,
    解得,,且.
    故选:D.
    【点睛】本题考查了一元二次方程的根的判别式与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当时,一元二次方程有两个不相等的实数根;当时,一元二次方程有两个相等的实数根;当时,一元二次方程没有实数根.
    13.(2023·山东·统考中考真题)一元二次方程的两根为,则的值为( )
    A.B.C.3D.
    【答案】C
    【分析】先求得,,再将变形,代入与的值求解即可.
    【详解】解:∵一元二次方程的两根为,
    ∴,


    故选:C.
    【点睛】本题主要考查了一元二次方程根与系数的关系,牢记,是解决本题的关键.
    14.(2023·内蒙古赤峰·统考中考真题)用配方法解方程时,配方后正确的是( )
    A.B.C.D.
    【答案】C
    【分析】根据配方法,先将常数项移到右边,然后两边同时加上,即可求解.
    【详解】解:
    移项得,
    两边同时加上,即
    ∴,
    故选:C.
    【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法是解题的关键.
    二、填空题
    15.(2023·湖南常德·统考中考真题)若关于的一元二次方程有两个不相等的实数根,则的取值范围是_________.
    【答案】
    【分析】若一元二次方程有两个不相等的实数根,则根的判别式,建立关于k的不等式,解不等式即可得出答案.
    【详解】解:∵关于x的方程有两个不相等的实数根,
    ∴,
    解得.
    故答案为:.
    【点睛】此题考查了根的判别式.一元二次方程的根与有如下关系:(1)⇔方程有两个不相等的实数根;(2)⇔方程有两个相等的实数根;(3)⇔方程没有实数根.
    16.(2023·湖北宜昌·统考中考真题)已知、是方程的两根,则代数式的值为_________.
    【答案】
    【分析】根据、是一元二次方程的两个根,则有,求解即可.
    【详解】解:由题意得

    原式.
    故答案:.
    【点睛】本题考查了韦达定理,掌握定理是解题的关键.
    17.(2022秋·河南新乡·九年级统考期中)关于x的一元二次方程有两个不相等的实数根,则m的取值范围是_____________.
    【答案】m>-1
    【分析】根据有两个不相等的实数根得到>0,解不等式即可.
    【详解】解:根据题意,得>0,
    解得 m>-1;
    故答案为m>-1.
    【点睛】本题考查一元二次方程的判别式,解决问题的关键是掌握判别式和方程根之间的关系:当>0时,原方程有两个不相等的实数根,当=0时,原方程有两个相等的实数根,当<0时,原方程无实数根.
    18.(2023·四川宜宾·统考中考真题)若关于x的方程两根的倒数和为1,则m的值为___________.
    【答案】2
    【分析】根据根与系数的关系即可求出答案.
    【详解】解:设方程的两个根分别为a,b,
    由题意得:,,
    ∴,
    ∴,解得:,
    经检验:是分式方程的解,
    检验:,
    ∴符合题意,
    ∴.
    故答案为:2.
    【点睛】本题考查了一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.
    19.(2023·黑龙江绥化·统考中考真题)已知一元二次方程的两根为与,则的值为_______.
    【答案】
    【分析】根据一元二次方程根与系数的关系得出,将分式通分,代入即可求解.
    【详解】解:∵一元二次方程,即,的两根为与,
    ∴,
    ∴,
    故答案为:.
    【点睛】本题考查了分式的化简求值,一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.
    20.(2023·重庆·统考中考真题)某新建工业园区今年六月份提供就业岗位个,并按计划逐月增长,预计八月份将提供岗位个.设七、八两个月提供就业岗位数量的月平均增长率为,根据题意,可列方程为___________.
    【答案】
    【分析】设七、八两个月提供就业岗位数量的月平均增长率为,根据题意列出一元二次方程,即可求解.
    【详解】解:设七、八两个月提供就业岗位数量的月平均增长率为,根据题意得,

    故答案为:.
    【点睛】本题考查了一元二次方程的应用,增长率问题,根据题意列出方程是解题的关键.
    21.(2023·四川达州·统考中考真题)已知是方程的两个实数根,且,则的值为___________.
    【答案】7
    【分析】根据根与系数的关系求出与的值,然后整体代入求值即可.
    【详解】∵是方程的两个实数根,
    ∴,,
    ∵,
    ∴,


    ∴解得.
    故答案为:7.
    【点睛】本题考查一元二次方程根与系数的关系,代数式求值.熟记一元二次方程根与系数的关系:和是解题关键.
    22.(2023·四川遂宁·统考中考真题)若a、b是一元二次方程的两个实数根,则代数式的值为_________.
    【答案】2
    【分析】根据根与系数的关系得到,由此即可得到答案.
    【详解】解:∵a、b是一元二次方程的两个实数根,
    ∴,
    ∴,
    故答案为:2.
    【点睛】本题主要考查了一元二次方程根与系数的关系,对于一元二次方程,若是该方程的两个实数根,则.
    23.(2023·四川眉山·统考中考真题)已知方程的根为,则的值为____________.
    【答案】6
    【分析】解方程,将解得的代入即可解答.
    【详解】解:,
    对左边式子因式分解,可得
    解得,,
    将,代入,
    可得原式,
    故答案为:6.
    【点睛】本题考查了因式分解法解一元二次方程,熟练掌握计算方法是解题的关键.
    24.(2023·湖南怀化·统考中考真题)已知关于x的一元二次方程的一个根为,则m的值为__________,另一个根为__________.
    【答案】;
    【分析】将代入原方程,解得,根据一元二次方程根与系数的关系,得出,即可求解.
    【详解】解:∵关于x的一元二次方程的一个根为,

    解得:,
    设原方程的另一个根为,则,


    故答案为:.
    【点睛】本题考查了一元二次方程根的定义,一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.
    25.(2023·甘肃武威·统考中考真题)关于的一元二次方程有两个不相等的实数根,则________(写出一个满足条件的值).
    【答案】(答案不唯一,合理即可)
    【分析】先根据关于的一元二次方程有两个不相等的实数根得到,解得,根据的取值范围,选取合适的值即可.
    【详解】解:∵关于的一元二次方程有两个不相等的实数根,
    ∴,
    解得,
    当时,满足题意,
    故答案为:(答案不唯一,合理即可).
    【点睛】此题考查了一元二次方程根的判别式,熟练掌握当时,一元二次方程有两个不相等的实数根是解题的关键.
    26.(2023·上海·统考中考真题)已知关于x的一元二次方程没有实数根,那么a的取值范围是________.
    【答案】
    【分析】根据一元二次方程根的判别式可进行求解.
    【详解】解:∵关于x的一元二次方程没有实数根,
    ∴,
    解得:;
    故答案为:.
    【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.
    27.(2023·湖南·统考中考真题)已知关于x的方程的一个根是,则它的另一个根是________.
    【答案】5
    【分析】根据一元二次方程根与系数的关系可得,根据该方程一个根为,即可求出另一个根.
    【详解】解:根据题意可得:,
    ∴,
    ∵该方程一个根为,令,
    ∴,解得:.
    故答案为:5.
    【点睛】本题主要考查了一元二次方程根与系数的关系,解题的关键是掌握一元二次方程有两根为,,则,.
    28.(2023·山东枣庄·统考中考真题)若是关x的方程的解,则的值为___________.
    【答案】2019
    【分析】将代入方程,得到,利用整体思想代入求值即可.
    【详解】解:∵是关x的方程的解,
    ∴,即:,


    故答案为:2019.
    【点睛】本题考查方程的解,代数式求值.熟练掌握方程的解是使等式成立的未知数的值,是解题的关键.
    29.(2022春·江苏泰州·九年级校考阶段练习)已知一元二次方程x2﹣3x+1=0有两个实数根x1,x2,则x1+x2﹣x1x2的值等于_____.
    【答案】2
    【分析】先根据根与系数的关系得x1+x2=3,x1x2=1,然后利用整体代入的方法计算.
    【详解】解:根据根与系数的关系得:
    x1+x2=3,x1x2=1,
    ∴x1+x2﹣x1x2=3﹣1=2.
    故答案为:2.
    【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2,x1x2.熟练掌握根与系数的关系是解决本题的关键.
    30.(2023·四川内江·统考中考真题)已知a、b是方程的两根,则___________.
    【答案】
    【分析】利用一元二次方程的解的定义和根与系数的关系,可得,从而得到,然后代入,即可求解.
    【详解】解:∵a,b是方程的两根,
    ∴,
    ∴,


    故答案为:.
    【点睛】本题主要考查了一元二次方程的解的定义和根与系数的关系,熟练掌握一元二次方程的解的定义和根与系数的关系是解题的关键.
    31.(2023·湖北黄冈·统考中考真题)已知一元二次方程的两个实数根为,若,则实数_____________.
    【答案】
    【分析】根据一元二次方程的根与系数的关系,得出,代入已知等式,即可求解.
    【详解】解:∵一元二次方程的两个实数根为,

    ∵,
    ∴,
    解得:,
    故答案为:.
    【点睛】本题考查了一元二次方程的根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.
    32.(2023·湖南·统考中考真题)某校截止到年底,校园绿化面积为平方米.为美化环境,该校计划年底绿化面积达到平方米.利用方程想想,设这两年绿化面积的年平均增长率为,则依题意列方程为__________.
    【答案】
    【分析】设这两年绿化面积的年平均增长率为,依题意列出一元二次方程即可求解.
    【详解】解:设这两年绿化面积的年平均增长率为,则依题意列方程为,
    故答案为:.
    【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.
    33.(2022秋·北京东城·九年级景山学校校考阶段练习)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是______.
    【答案】k<1.
    【分析】由方程有两个不等实数根可得出关于k的一元一次不等式,解不等式即可得出结论.
    【详解】∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,
    ∴△=,
    解得:,
    故答案为:.
    【点睛】本题考查了根的判别式以及解一元一次不等式,解题的关键是得出关于k的一元一次不等式.熟知“在一元二次方程中,若方程有两个不相等的实数根,则△=”是解答本题的关键.
    34.(2023·湖南岳阳·统考中考真题)已知关于的一元二次方程有两个不相等的实数根,且,则实数_________.
    【答案】3
    【分析】利用一元二次方程有两个不相等的实数根求出m的取值范围,由根与系数关系得到,代入,解得的值,根据求得的m的取值范围,确定m的值即可.
    【详解】解:∵关于的一元二次方程有两个不相等的实数根,
    ∴,
    解得,
    ∵,,
    ∴,
    解得(不合题意,舍去),

    故答案为:3.
    【点睛】此题考查一元二次方程根的判别式和一元二次方程根与系数关系,熟练掌握根的判别式和根与系数关系的内容是解题的关键.
    三、解答题
    35.(2023秋·辽宁沈阳·九年级统考期末)解方程:.
    【答案】,
    【分析】首先将方程进行因式分解,然后根据因式分解的结果求出方程的解.
    【详解】解:
    ∴或
    ∴,.
    【点睛】本题考查了解一元二次方程,解题的关键是掌握因式分解法求解方程.
    36.(2023·辽宁大连·统考中考真题)为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求年买书资金的平均增长率.
    【答案】
    【分析】设年买书资金的平均增长率为,根据2022年买书资金2020年买书资金建立方程,解方程即可得.
    【详解】解:设年买书资金的平均增长率为,
    由题意得:,
    解得或(不符合题意,舍去),
    答:年买书资金的平均增长率为.
    【点睛】本题考查了一元二次方程的应用,找准等量关系,正确建立方程是解题关键.
    37.(2023·湖北·统考中考真题)已知关于x的一元二次方程.
    (1)求证:无论m取何值时,方程都有两个不相等的实数根;
    (2)设该方程的两个实数根为a,b,若,求m的值.
    【答案】(1)见解析;(2)的值为1或
    【分析】(1)根据一元二次方程根的判别式可进行求解;
    (2)根据一元二次方程根与系数的关系可进行求解.
    【详解】(1)证明:∵,
    ∴无论取何值,方程都有两个不相等的实数根.
    (2)解:∵的两个实数根为,
    ∴.
    ∵,
    ∴,.
    ∴.
    即.
    解得或.
    ∴的值为1或.
    【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.
    38.(2023·四川南充·统考中考真题)已知关于x的一元二次方程
    (1)求证:无论m为何值,方程总有实数根;
    (2)若,是方程的两个实数根,且,求m的值.
    【答案】(1)见解析;(2)或
    【分析】(1)根据一元二次方程根的情况与判别式的关系,只要判定即可得到答案;
    (2)根据一元二次方程根与系数的关系得到,,整体代入得到求解即可得到答案.
    【详解】(1)证明:关于的一元二次方程,
    ∴,,,
    ∴,
    ∵,即,
    ∴不论为何值,方程总有实数根;
    (2)解:∵,是关于x的一元二次方程的两个实数根,
    ∴,,
    ∵,
    ∴,
    ∴,整理,得,解得,,
    ∴m的值为或.
    【点睛】本题考查一元二次方程根的情况与判别式关系,一元二次方程根与系数的关系,熟记一元二次方程判别式与方程根的情况联系、一元二次方程根与系数的关系是解决问题的关键.
    39.(2023·浙江杭州·统考中考真题)设一元二次方程.在下面的四组条件中选择其中一组的值,使这个方程有两个不相等的实数根,并解这个方程.
    ①;②;③;④.
    注:如果选择多组条件分别作答,按第一个解答计分.
    【答案】选②,,;选③,,
    【分析】先根据判别式判断一元二次方程根的情况,再利用公式法解一元二次方程即可.
    【详解】解:中,
    ①时,,方程有两个相等的实数根;
    ②时,,方程有两个不相等的实数根;
    ③时,,方程有两个不相等的实数根;
    ④时,,方程没有实数根;
    因此可选择②或③.
    选择②时,



    ,;
    选择③时,



    ,.
    【点睛】本题考查根据判别式判断一元二次方程根的情况,解一元二次方程,解题的关键是掌握:对于一元二次方程,当时,方程有两个不相等的实数根;当时,方程有两个不相等的实数根;当时,方程没有实数根.
    40.(2023·湖南郴州·统考中考真题)随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.
    (1)求这两个月中该景区游客人数的月平均增长率;
    (2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?
    【答案】(1)这两个月中该景区游客人数的月平均增长率为;(2)5月份后10天日均接待游客人数最多是1万人
    【分析】(1)设这两个月中该景区游客人数的月平均增长率为,根据题意,列出一元二次方程,进行求解即可;
    (2)设5月份后10天日均接待游客人数是y万人,根据题意,列出不等式进行计算即可.
    【详解】(1)解:设这两个月中该景区游客人数的月平均增长率为,由题意,得:

    解得:(负值已舍掉);
    答:这两个月中该景区游客人数的月平均增长率为;
    (2)设5月份后10天日均接待游客人数是y万人,由题意,得:

    解得:;
    ∴5月份后10天日均接待游客人数最多是1万人.
    【点睛】本题考查一元二次方程和一元一次不等式的实际应用,找准等量关系,正确的列出方程和不等式,是解题的关键.
    41.(2023·湖北荆州·统考中考真题)已知关于的一元二次方程有两个不相等的实数根.
    (1)求的取值范围;
    (2)当时,用配方法解方程.
    【答案】(1)且;(2),
    【分析】(1)根据题意,可得,注意一元二次方程的系数问题,即可解答,
    (2)将代入,利用配方法解方程即可.
    【详解】(1)解:依题意得:,
    解得且;
    (2)解:当时,原方程变为:,
    则有:,


    方程的根为,.
    【点睛】本题考查了根据根的情况判断参数,用配方法解一元二次方程,熟练利用配方法解一元二次方程是解题的关键.
    相关试卷

    中考数学真题分项汇编(全国通用)专题08不等式(组)及其应用(共30道)精练(原卷版+解析): 这是一份中考数学真题分项汇编(全国通用)专题08不等式(组)及其应用(共30道)精练(原卷版+解析),共26页。试卷主要包含了单选题,解答题,填空题等内容,欢迎下载使用。

    中考数学真题分项汇编(全国通用)专题04分式与分式方程精练(原卷版+解析): 这是一份中考数学真题分项汇编(全国通用)专题04分式与分式方程精练(原卷版+解析),共42页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    中考数学真题分项汇编(全国通用)专题01实数的概念及运算(共50题)精练(原卷版+解析): 这是一份中考数学真题分项汇编(全国通用)专题01实数的概念及运算(共50题)精练(原卷版+解析),共25页。试卷主要包含了单选题,填空题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map