年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024年陕西省宝鸡市扶风县九年级数学第一学期开学检测试题【含答案】

    2024年陕西省宝鸡市扶风县九年级数学第一学期开学检测试题【含答案】第1页
    2024年陕西省宝鸡市扶风县九年级数学第一学期开学检测试题【含答案】第2页
    2024年陕西省宝鸡市扶风县九年级数学第一学期开学检测试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年陕西省宝鸡市扶风县九年级数学第一学期开学检测试题【含答案】

    展开

    这是一份2024年陕西省宝鸡市扶风县九年级数学第一学期开学检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图的阴影部分是两个正方形,图中还有两个直角三角形和一个大正方形,则阴影部分的面积是( )
    A.16B.25C.144D.169
    2、(4分)下列运算正确的是( )
    A.B.
    C.D.
    3、(4分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元与上网时间x(h)的函数关系如图所示,则下列判断错误的是
    A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多
    C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱
    4、(4分)下列调查适合普查的是( )
    A.调查2011年3月份市场上西湖龙井茶的质量
    B.了解萧山电视台188热线的收视率情况
    C.网上调查萧山人民的生活幸福指数
    D.了解全班同学身体健康状况
    5、(4分)如图,已知一次函数y=ax+b和y=kx的图象相交于点P,则根据图象可得二元一次方程组的解是( )
    A.B.C.D.
    6、(4分)如图,一次函数的图象与两坐标轴分别交于、两点,点是线段上一动点(不与点A、B重合),过点分别作、垂直于轴、轴于点、,当点从点开始向点运动时,则矩形的周长( )
    A.不变B.逐渐变大C.逐渐变小D.先变小后变大
    7、(4分)在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )
    A.B.C.D.
    8、(4分)若点P(a,2)在第二象限,则a的值可以是( )
    A.B.0C.1D.2
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,直线y=mx与双曲线y=交于A、B两点,D为x轴上一点,连接BD交y轴与点C,若C(0,-2)恰好为BD中点,且△ABD的面积为6,则B点坐标为__________.
    10、(4分)如图,已知△ABC是面积为4的等边三角形,△ABC∽△ADE,
    AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积
    等于___(结果保留根号).
    11、(4分)使得分式值为零的x的值是_________;
    12、(4分)已知菱形两条对角线的长分别为12和16,则这个菱形的周长为______.
    13、(4分)如图,菱形ABCD的对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=10cm,则OE的长为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知:如图,在矩形中,点,分别在,边上,,连接,.求证:.
    15、(8分)如图①,在矩形ABCD中,AB=,BC=3,在BC边上取两点E、F(点E在点F的左边),以EF为边所作等边△PEF,顶点P恰好在AD上,直线PE、PF分别交直线AC于点G、H.
    (1)求△PEF的边长;
    (2)若△PEF的边EF在线段CB上移动,试猜想:PH与BE有何数量关系?并证明你猜想的结论;
    (3)若△PEF的边EF在射线CB上移动(分别如图②和图③所示,CF>1,P不与A重合),(2)中的结论还成立吗?若不成立,直接写出你发现的新结论.
    16、(8分)某经销商从市场得知如下信息:
    他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.
    (1)试写出y与x之间的函数关系式;
    (2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;
    (3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.
    17、(10分)如图l,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连结EB,过点A作AMBE,垂足为M,AM交BD于点F.
    (1)求证:OE=OF;
    (2)如图2,若点E在AC的延长线上,AMBE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗.如果成立,请给出证明;如果不成立,请说明理由.
    18、(10分)已知为原点,点及在第一象限的动点,且,设的面积为.
    (1)求关于的函数解析式;
    (2)求的取值范围;
    (3)当时,求点坐标;
    (4)画出函数的图象.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,平行四边形ABCD内的一点E到边AD,AB,BC的距离相等,则∠AEB的度数等于____.
    20、(4分)若关于x的方程的解是负数,则a的取值范围是_____________。
    21、(4分)若正比例函数,y随x的增大而减小,则m的值是_____.
    22、(4分)在平面直角坐标系中,点P(1,2)关于y轴的对称点Q的坐标是________;
    23、(4分)在平面直角坐标系中,点P(﹣,﹣1)到原点的距离为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,直线y=﹣2x+3与x轴相交于点A,与y轴相交于点B.
    (1)求A,B两点的坐标;
    (2)过B点作直线BP与x轴相交于点P,且使OP=2OA,求△ABP的面积.
    25、(10分)已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是甲乙两车离A地的距离y(千米)与行驶时间x(小时)之间的函数图象.
    (1)求甲车离A地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;
    (2)若它们出发第5小时时,离各自出发地的距离相等,求乙车离A地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;
    (3)在(2)的条件下,求它们在行驶的过程中相遇的时间.
    26、(12分)如图(1),在矩形中,分别是的中点,作射线,连接.
    (1)请直接写出线段与的数量关系;
    (2)将矩形变为平行四边形,其中为锐角,如图(2),,分别是的中点,过点作交射线于点,交射线于点,连接,求证:;
    (3)写出与的数量关系,并证明你的结论.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    两个阴影正方形的面积和等于直角三角形另一未知边的平方,利用勾股定理即可求出.
    【详解】
    两个阴影正方形的面积和为132- 122= 25,所以B选项是正确的.
    本题主要考查了正方形的面积以及勾股定理的应用,推知“正方形的面积和等于直角三角形另一未知边的平方”是解题的难点.
    2、D
    【解析】
    试题分析:A、,故A选项错误;
    B、,故B选项错误;
    C、,故C选项错误;
    D、,故D选项正确,
    故选D.
    考点:约分
    3、D
    【解析】
    A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;
    B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;
    C、利用待定系数法求出:当x≥25时,yA与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时yA的值,将其与50比较后即可得出结论C正确;
    D、利用待定系数法求出:当x≥50时,yB与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时yB的值,将其与120比较后即可得出结论D错误.
    综上即可得出结论.
    【详解】
    A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;
    B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;
    C、设当x≥25时,yA=kx+b,
    将(25,30)、(55,120)代入yA=kx+b,得:
    ,解得:,
    ∴yA=3x-45(x≥25),
    当x=35时,yA=3x-45=60>50,
    ∴每月上网时间为35h时,选择B方式最省钱,结论C正确;
    D、设当x≥50时,yB=mx+n,
    将(50,50)、(55,65)代入yB=mx+n,得:

    解得:,
    ∴yB=3x-100(x≥50),
    当x=70时,yB=3x-100=110<120,
    ∴结论D错误.
    故选D.
    本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.
    4、D
    【解析】
    解:A、B、C范围广,工作量大,不宜采用普查,只能采用抽样调查;
    D工作量小,没有破坏性,适合普查.
    故选D.
    5、A
    【解析】
    分析:本题利用一次函数与方程组的关系来解决即可.
    解析:两个函数的交点坐标即为方程组的解,由图知P( -4,-2 ),∴方程组的解为.
    故选A.
    点睛:方程组与一次函数的关系:两条直线相交,交点坐标即为两个函数解析式组成的方程组的解.本体关键是要记得这个知识点,然后看图直接给出答案.
    6、A
    【解析】
    根据一次函数图象上点的坐标特征可设出点C的坐标为(m,-m+1),根据矩形的周长公式即可得出C矩形CDOE=2,此题得解.
    【详解】
    解:设点的坐标为,,
    则,,

    故选:.
    本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C的坐标是解题的关键.
    7、C
    【解析】
    根据轴对称图形和中心对称图形的定义进行分析即可.
    【详解】
    A、不是轴对称图形,也不是中心对称图形.故此选项错误;
    B、不是轴对称图形,也不是中心对称图形.故此选项错误;
    C、是轴对称图形,也是中心对称图形.故此选项正确;
    D、是轴对称图形,但不是中心对称图形.故此选项错误.
    故选C.
    考点:1、中心对称图形;2、轴对称图形
    8、A
    【解析】
    根据第二象限内点的横坐标是负数判断.
    【详解】
    解:∵点P(a,1)在第二象限,
    ∴a<0,
    ∴-1、0、1、1四个数中,a的值可以是-1.
    故选:A.
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(,-4)
    【解析】
    设点B坐标为(a,b),由点C(0,-2)是BD中点可得b=-4,D(-a,0),根据反比例函数的对称性质可得A(-a,4),根据A、D两点坐标可得AD⊥x轴,根据△ABD的面积公式列方程可求出a值,即可得点B坐标.
    【详解】
    设点B坐标为(a,b),
    ∵点C(0,-2)是BD中点,点D在x轴上,
    ∴b=-4,D(-a,0),
    ∵直线y=mx与双曲线y=交于A、B两点,
    ∴A(-a,4),
    ∴AD⊥x轴,AD=4,
    ∵△ABD的面积为6,
    ∴S△ABD=AD×2a=6
    ∴a=,
    ∴点B坐标为(,-4)
    本题考查反比例函数的性质,反比例函数图象是以原点为对称中心的双曲线,根据反比例函数的对称性表示出A点坐标是解题关键.
    10、3-
    【解析】
    根据相似三角形面积比等于相似比的平方求得三角形ADE的面积,然后求出其边长,过点F作FH⊥AE,过C作CM⊥AB,利用三角函数求出HF的值,即可得出三角形AFE的面积.
    【详解】
    解:作CM⊥AB于M,
    ∵等边△ABC的面积是4,
    ∴设BM=x,∴tan∠BCM=,
    ∴BM=CM,
    ∴×CM×AB=×2×CM2=4,
    ∴CM=2,BM=2,
    ∴AB=4,AD=AB=2,
    在△EAD中,作HF⊥AE交AE于H,
    则∠AFH=45°,∠EFH=30°,
    ∴AH=HF,
    设AH=HF=x,则EH=xtan30°=x.
    又∵AH+EH=AE=AD=2,
    ∴x+x=2,
    解得x=3-.
    ∴S△AEF=×2×(3-)=3-.
    故答案为3-
    11、2
    【解析】
    根据分式的性质,要使分式有意义,则必须分母不能为0,要使分式为零,则只有分子为0,因此计算即可.
    【详解】
    解:要使分式有意义则 ,即
    要使分式为零,则 ,即
    综上可得
    故答案为2
    本题主要考查分式的性质,关键在于分式的分母不能为0.
    12、1
    【解析】
    根据菱形的对角线互相垂直平分,利用勾股定理即可解决.
    【详解】
    如图,四边形ABCD是菱形,AC=12,BD=16,
    ∵四边形ABCD是菱形,
    ∴AC⊥BC,AB=BC=CD=AD,AO=OC=6,OB=OD=8,
    在Rt△AOB中,AB=,
    ∴菱形ABCD周长为1.
    故答案为1
    本题考查菱形的性质、勾股定理等知识,记住菱形的对角线互相垂直平分、菱形的四边相等是解决问题的关键,属于中考常考题型.
    13、5cm
    【解析】
    只要得出OE是△ABC的中位线,从而求得OE的长.
    【详解】
    解:∵OE∥DC,AO=CO,
    ∴OE是△ABC的中位线,
    ∵四边形ABCD是菱形,
    ∴AB=AD=10cm,
    ∴OE=5cm.
    故答案为5cm.
    本题考查了菱形的性质及三角形的中位线定理,属于基础题,关键是得出OE是△ABC的中位线,难度一般.
    三、解答题(本大题共5个小题,共48分)
    14、见解析
    【解析】
    根据矩形的性质得出DC∥AB,DC=AB,求出CF=AE,CF∥AE,根据平行四边形的判定得出四边形AFCE是平行四边形,即可得出答案.
    【详解】
    证明:∵四边形ABCD是矩形,
    ∴DC∥AB,DC=AB,
    ∴CF∥AE,
    ∵DF=BE,
    ∴CF=AE,
    ∴四边形AFCE是平行四边形,
    ∴AF=CE.
    本题考查了平行四边形的性质和判定,矩形的性质的应用,注意:矩形的对边相等且平行,平行四边形的对边相等.
    15、(1)△PEF的边长为2;(2)PH﹣BE=1,证明见解析;(3)结论不成立,当1<CF<2时,PH=1﹣BE,当2<CF<3时,PH=BE﹣1.
    【解析】
    (1)过P作PQ⊥BC,垂足为Q,由四边形ABCD为矩形,得到∠B为直角,且AD∥BC,得到PQ=AB,又△PEF为等边三角形,根据“三线合一”得到∠FPQ为30°,在Rt△PQF中,设出QF为x,则PF=2x,由PQ的长,根据勾股定理列出关于x的方程,求出x的值,即可得到PF的长,即为等边三角形的边长;
    (2)PH﹣BE=1,过E作ER垂直于AD,如图所示,首先证明△APH为等腰三角形,在根据矩形的对边平行得到一对内错角相等,可得∠APE=60°,在Rt△PER中,∠REP=30°,根据直角三角形中,30°角所对的直角边等于斜边的一半,由PE求出PR,由PA=PH,则PH﹣BE=PA﹣BE=PA﹣AR=PR,即可得到两线段的关系;
    (3)当若△PEF的边EF在射线CB上移动时(2)中的结论不成立,由(2)的解题思路可知当1<CF<2时,PH=1﹣BE,当2<CF<3时,PH=BE﹣1.
    【详解】
    解:(1)过P作PQ⊥BC于Q(如图1),
    ∵四边形ABCD是矩形, ∴∠B=90°,即AB⊥BC,
    又∵AD∥BC, ∴PQ=AB=, ∵△PEF是等边三角形, ∴∠PFQ=60°,
    在Rt△PQF中,∠FPQ=30°, 设PF=2x,QF=x,PQ=,根据勾股定理得:,
    解得:x=1,故PF=2,
    ∴△PEF的边长为2;
    (2)PH﹣BE=1,理由如下:
    ∵在Rt△ABC中,AB=,BC=3, ∴由勾股定理得AC=2,
    ∴CD=AC, ∴∠CAD=30° ∵AD∥BC,∠PFE=60°, ∴∠FPD=60°, ∴∠PHA=30°=∠CAD,
    ∴PA=PH, ∴△APH是等腰三角形, 作ER⊥AD于R(如图2) Rt△PER中,∠RPE=60°, ∴PR=PE=1,
    ∴PH﹣BE=PA﹣BE=PR=1.
    (3)结论不成立,
    当1<CF<2时,PH=1﹣BE, 当2<CF<3时,PH=BE﹣1.
    本题考查相似形综合题.
    16、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.
    【解析】
    (1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;
    (2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;
    (3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.
    【详解】
    解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.
    由700x+100(100﹣x)≤40000得x≤50.
    ∴y与x之间的函数关系式为y=140x+6000(x≤50)
    (2)令y≥12600,即140x+6000≥12600,
    解得x≥47.1.
    又∵x≤50,∴经销商有以下三种进货方案:
    (3)∵140>0,∴y随x的增大而增大.
    ∴x=50时y取得最大值.
    又∵140×50+6000=13000,
    ∴选择方案③进货时,经销商可获利最大,最大利润是13000元.
    本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.
    17、(1)证明见解析;(2)成立,证明见解析.
    【解析】
    解:(1)∵四边形ABCD是正方形.
    ∴∠BOE=∠AOF=90°,OB=OA,
    又∵AM⊥BE,
    ∴∠MEA+∠MAE=90°=∠AFO+∠MAE
    ∴∠MEA=∠AFO,
    ∴Rt△BOE≌ Rt△AOF
    ∴OE=OF
    (2)OE=OF成立
    ∵四边形ABCD是正方形,
    ∴∠BOE=∠AOF=90°,OB=OA
    又∵AM⊥BE,
    ∴∠F+∠MBF=90°=∠E+∠OBE
    又∵∠MBF=∠OBE
    ∴∠F=∠E
    ∴Rt△BOE≌Rt△AOF
    ∴OE=OF
    18、(1)S=−4x+48;(2)0<x<12;(3)P(1,3);(4)见解析.
    【解析】
    (1)根据三角形的面积公式即可得出结论;
    (2)根据(1)中函数关系式及点P在第一象限即可得出结论;
    (3)把S=12代入(1)中函数关系即可得出x的值,进而得出y的值;
    (4)利用描点法画出函数图象即可.
    【详解】
    解:(1)∵A点和P点的坐标分别是(8,0)、(x,y),
    ∴S=×8×y=4y.
    ∵x+y=12,
    ∴y=12−x.
    ∴S=4(12−x)=48−4x,
    ∴所求的函数关系式为:S=−4x+48;
    (2)由(1)得S=−4x+48>0,
    解得:x<12;
    又∵点P在第一象限,
    ∴x>0,
    综上可得x的取值范围为:0<x<12;
    (3)∵S=12,
    ∴−4x+48=12,
    解得x=1.
    ∵x+y=12,
    ∴y=12−1=3,
    即P(1,3);
    (4)∵函数解析式为S=−4x+48,
    ∴函数图象是经过点(12,0)(0,48)但不包括这两点的线段.
    所画图象如图:
    本题考查的是一次函数的应用,根据题意得到函数关系式,并熟知一次函数的图象和性质是解答此题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、90°
    【解析】
    点E到边AD,AB,BC的距离相等,可知可知AE、BE分别为∠DAB、∠ABC的角平分线,然后根据角平分线的定义及三角形内角和求解即可.
    【详解】
    依题意,可知AE、BE分别为∠DAB、∠ABC的角平分线,
    又AD∥BC,
    所以,∠DAB+∠CBA=180°,
    所以,∠DAB+∠CBA=90°,
    即∠EAB+∠EBA=90°,
    所以,∠AEB=90°.
    故答案为:90°.
    本题考查了角平分线的判定,平行四边形的性质,三角形内角和等知识,证明AE、BE分别为∠DAB、∠ABC的角平分线是解答本题的关键.
    20、
    【解析】
    :把a看作常数,根据分式方程的解法求出x的表达式,再根据方程的解是负数列不等式组并求解即可:
    【详解】
    解:∵

    ∵关于x的方程的解是负数


    解得
    本题考查了分式方程的解与解不等式,把a看作常数求出x的表达式是解题的关键.
    21、﹣2
    【解析】
    根据正比例函数的定义及性质可得,且m-1<0,即可求出m的值.
    【详解】
    由题意可知:
    ,且m-1<0,
    解得m=-2.
    故答案为:-2.
    本题考查了正比例函数定义及性质.当k<0时,函数值y随x的增大而减小;当k>0时,函数值y随x的增大而增大.
    22、(-1,2)
    【解析】
    关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.
    【详解】
    关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.
    故Q坐标为(-1,2).
    故答案为:(-1,2).
    此题考查的是关于y轴对称的两点坐标的特点,掌握两点关于坐标轴或原点对称坐标特点是解决此题的关键.
    23、2
    【解析】
    ∵点P的坐标为,
    ∴OP=,即点P到原点的距离为2.
    故答案为2.
    点睛:平面直角坐标系中,点P到原点的距离=.
    二、解答题(本大题共3个小题,共30分)
    24、(1)A(,0),B(0,3);(2)或.
    【解析】
    分析:(1)由函数解析式,令y=0求得A点坐标,x=0求得B点坐标;
    (2)有两种情况,若BP与x轴正方向相交于P点,则;若BP与x轴负方向相交于P点,则,由此求得的面积.
    详解:(1)令y=0,得
    ∴A点坐标为
    令x=0,得y=3,
    ∴B点坐标为(0,3);

    ∴ 或
    ∴AP=或,
    ∴,或.
    点睛:考查了一次函数的相关知识,是初中数学的常考题目,关键是求出一次函数与坐标轴的交点坐标.
    25、(1) ;(2)140千米,y乙=300﹣28x ,(0≤x≤);(3)或小时
    【解析】
    (1)由图知,该函数关系在不同的时间里表现出不同的关系,需分段表达,可根据待定系数法列方程,求函数关系式.(2)根据题意求出乙车速度,列出y乙与行驶时间x的函数关系式;(3)联立方程分段求出相遇时间.
    【详解】
    (1)由图象可知,甲车由A到B的速度为300÷3=100千米/时,由B到A的速度为千米/时,
    则当0≤x≤3时:y甲=100x,
    当3≤x≤时:y甲=300﹣80(x﹣3)=﹣80x+540,
    ∴y甲=,
    (2)当x=5时,y甲=﹣80×5+540=140(千米),
    则第5小时时,甲距离A140千米,则乙距离B140千米,则乙的速度为140÷5=28千米/时,
    则y乙=300﹣28x (0≤x≤),
    (3)当0≤x≤3时,
    100x=300﹣28x,
    解得x=.
    当3≤x≤时,
    300﹣28x=﹣80x+540,
    x=.
    ∴甲、乙两车相遇的时间为或小时,
    本题考查了一次函数的应用,解题的关键是明确题意,利用数形结合的思想解答本题.
    26、(1)MD=MC;(2)见解析;(3)∠BME=3∠AEM,证明见解析.
    【解析】
    (1)由“SAS”可证△ADM≌△BCM,可得MD=MC;
    (2)由题意可证四边形ADNM是平行四边形,可得AD∥MN,可得EF=FC,MF⊥EC,由线段垂直平分线的性质可得ME=MC;
    (3)由等腰三角形的性质和平行线的性质可得∠BME=3∠AEM.
    【详解】
    解:(1)∵四边形ABCD是矩形,
    ∴AD=BC,∠A=∠B=90°,
    ∵点M是AB中点,
    ∴AM=BM,
    ∴△ADM≌△BCM(SAS),
    ∴MD=MC;
    (2)∵M、N分别是AB、CD的中点,
    ∴AM=BM,CN=DN,
    ∵四边形ABCD是平行四边形,
    ∴AB=CD,AB∥CD,
    ∴DN=AM=CN=BM,
    ∴四边形ADNM是平行四边形,
    ∴AD∥MN,
    ∴,∠AEC=∠NFC=90°,
    ∴EF=CF,且MF⊥EC,
    ∴ME=MC;
    (3)∠BME=3∠AEM,
    证明:∵EM=MC,EF=FC,
    ∴∠EMF=∠FMC,
    ∵AB=2BC,M是AB中点,
    ∴MB=BC,
    ∴∠BMC=∠BCM,
    ∵MN∥AD,AD∥BC,
    ∴AD∥MN∥BC,
    ∴∠AEM=∠EMF,∠FMC=∠BCM,
    ∴∠AEM=∠EMF=∠FMC=∠BCM=∠BMC,
    ∴∠BME=3∠AEM.
    本题是四边形综合题,考查了平行四边形的判定和性质,矩形的性质,全等三角形的判定和性质,等腰三角形的性质等知识,(2)中证明EF=CF是本题的关键.
    题号





    总分
    得分
    批阅人
    A品牌手表
    B品牌手表
    进价(元/块)
    700
    100
    售价(元/块)
    900
    160
    方案
    A品牌(块)
    B品牌(块)

    48
    52

    49
    51

    50
    50

    相关试卷

    陕西省宝鸡市扶风县2023-2024学年九年级上学期期末数学试题:

    这是一份陕西省宝鸡市扶风县2023-2024学年九年级上学期期末数学试题,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    陕西省宝鸡市扶风县2023-2024学年九年级数学第一学期期末监测试题含答案:

    这是一份陕西省宝鸡市扶风县2023-2024学年九年级数学第一学期期末监测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,如图,四边形内接于⊙,等内容,欢迎下载使用。

    2023-2024学年陕西省宝鸡市扶风县九年级上学期期中数学模拟试题(含答案):

    这是一份2023-2024学年陕西省宝鸡市扶风县九年级上学期期中数学模拟试题(含答案),共8页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map