2024年山东省济宁市曲阜师大附属实验学校数学九年级第一学期开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形的面积为28,对角线交于点;以、为邻边作平行四边形,对角线交于点;以、为邻边作平行四边形;…依此类推,则平行四边形的面积为( )
A.B.C.D.
2、(4分)如图所示,在中,分别是的中点,分别交于点.下列命题中不正确的是( )
A.B.
C.D.
3、(4分)使有意义的取值范围是( )
A.B.C.D.
4、(4分)如图,正方形ABCD的四个顶点A、B、C、D正好分别在四条平行线l1、l2、l3、l4上.若从上到下每两条平行线间的距离都是2cm,则正方形ABCD的面积为( )
A.4cm2B.5cm2C.20cm2D.30cm2
5、(4分)下列植物叶子的图案中既是轴对称,又是中心对称图形的是( )
A.B.C..D.
6、(4分)下列图形中,对称轴的条数最少的图形是
A.B.C.D.
7、(4分)如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠BCE=28°,则∠D=( )
A.28°B.38°C.52°D.62°
8、(4分)如图,的一边在轴上,长为5,且,反比例函数和分别经过点,,则的周长为
A.12B.14C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)方程的根为________.
10、(4分)化简b 0 _______.
11、(4分)某种手机每部售价为元,如果每月售价的平均降低率为,那么两个月后,这种手机每部的售价是____________元.(用含,的代数式表示)
12、(4分)如果一个多边形的每一个外角都等于60°,则它的内角和是__________.
13、(4分)如图,小明在“4x5”的长方形内丢一粒花生(将花生看作一个点),则花生落在阴影的部分的概率是_________
三、解答题(本大题共5个小题,共48分)
14、(12分)为了解某中学学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:
根据以上提供的信息,解答下列问题:
(1)x ,a ,b ;
(2)补全上面的条形统计图;
(3)若该校共有学生5000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.
15、(8分)已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.
(1)求这个一次函数的解析式;
(2)求此函数与x轴,y轴围成的三角形的面积.
16、(8分)把下列各式因式分解:
(1)a3﹣4a2+4a
(2)a2(x﹣y)+b2(y﹣x)
17、(10分)为了满足市场需求,某厂家生产A、B两种款式的环保购物袋,每天共生产5000个,两种购物袋的成本和售价如下表:
设每天生产A种购物袋x个,每天共获利y元.
(1)求y与x的函数解析式;
(2)如果该厂每天最多投入成本12000元,那么每天最多获利多少元?
18、(10分)先化简,然后a在﹣1、1、2三个数中任选一个合适的数代入求值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在中,,,,过点作,垂足为,则的长度是______.
20、(4分)如图,在边长为2的正方形ABCD的外部作,且,连接DE、BF、BD,则________.
21、(4分)如图,a∥b,∠1=110°,∠3=50°,则∠2的度数是_____.
22、(4分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AEF,延长EF交边BC于点G,连接AG,CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤S△FGC=,其中正确的结论有__________.
23、(4分)若b为常数,且﹣bx+1是完全平方式,那么b=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图一次函数y=kx+b的图象经过点A和点B.
(1)写出点A和点B的坐标并求出k、b的值;
(2)求出当x=时的函数值.
25、(10分)已知:是一元二次方程的两实数根.
(1)求 的值;
(2)求 x1 x2的值.
26、(12分)如图,矩形的两条边、分别在轴和轴上,已知点 坐标为(4,–3).把矩形沿直线折叠,使点落在点处,直线与、、的交点分别为、、.
(1)线段 ;
(2)求点坐标及折痕的长;
(3)若点在轴上,在平面内是否存在点,使以、、、为顶点的四边形是菱形?若存在,则请求出点的坐标;若不存在,请说明理由;
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
设矩形ABCD的面积为S,则平行四边形AOC1B的面积=矩形ABCD的面积=S,平行四边形AO1C2B的面积=平行四边形AOC1B的面积=,…,平行四边形AOn-1CnB的面积= ,平行四边形AOnCn+1B的面积=,即可得出结果.
【详解】
解:设矩形ABCD的面积为S
根据题意得:平行四边形AOC1B的面积=矩形ABCD的面积=S
平行四边形AO1C2B的面积=平行四边形AOC1B的面积=,…
平行四边形AOn-1CnB的面积=
∴平行四边形AOnCn+1B的面积=
∴平行四边形的面积=
故选C.
本题考查了矩形的性质、平行四边形的性质、规律推论等知识,熟练掌握矩形的性质和平行四边形的性质,得出平行四边形AOnCn+1B的面积=是解题的关键.
2、A
【解析】
证出四边形AMCN是平行四边形,由平行四边形的性质得出选项B正确,由相似三角形的性质得出选项C正确,由平行四边形的面积公式得出选项D正确,即可得出结论.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,∠BAD=∠BCD,
∵M、N分别是边AB、CD的中点,
∴CN=CD,AM=AB,
∴CN=AM,
∴四边形AMCN是平行四边形,
∴AN∥CM,∠MAN=∠NCM,
∴∠DAN=∠BCM,选项B正确;
∴△BMQ∽△BAP,△DPN∽△DQC,
∴BQ:BP=BM:AB=1:2,DP:DQ=DN:CD=1:2,
∴DP=PQ,BQ=PQ,
∴DP=PQ=QB,
∴BP=DQ,选项C正确;
∵AB=2AM,
∴S▱AMCN:S▱ABCD=1:2,选项D正确;
故选A.
此题考查了平行四边形的判定与性质、相似三角形的判定与性质等知识.此题难度适中,注意掌握数形结合思想的应用.
3、C
【解析】
根据二次根式的非负性可得,解得:
【详解】
解:∵使有意义,
∴
解得
故选C
本题考查二次根式有意义的条件,熟练掌握二次根式的非负性为解题关键
4、C
【解析】
过D作直线EF与平行线垂直,交l1与点E,交l4于点F.再证明,得到 ,故可求的CD的长,进而求出正方形的面积.
【详解】
过D作直线EF与l2垂直,交l1与点E,交l4于点F.
,即
四边形ABCD为正方形
在和中
即正方形的面积为20
故选C.
本题主要考查平行线的性质,关键在于利用三角形全等求正方形的边长.
5、D
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A. 是轴对称图形,不是中心对称图形。故选项错误;
B. 是轴对称图形,不是中心对称图形。故选项错误;
C. 不是轴对称图形,也不是中心对称图形。故选项错误;
D. 是轴对称图形,也是中心对称图形。故选项正确。
故选D.
此题考查中心对称图形,轴对称图形,解题关键在于掌握其概念
6、B
【解析】
把各个图形抽象成基本的几何图形,再分别找出它们的对称轴,圆有无数条对称轴,正方形有4条对称轴,等边三角形有三条对称轴;找出各个图形中所有的对称轴,再比较即可找出对称轴最少的图形.
【详解】
选项A、C、D中各有4条对称轴,选项B中只有1条对称轴,所以对称轴条数最少的图形是B.
故选:B.
本题主要考查的是轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
7、D
【解析】
由CE⊥AB得出∠CEB=90°,根据三角形内角和定理求出∠B,根据平行四边形的性质即可得出∠D的值.
【详解】
解:∵CE⊥AB,
∴∠CEB=90°,
∵∠BCE=28°,
∴∠B=62°,
∵四边形ABCD是平行四边形,
∴∠D=∠B=62°,
故选:D.
本题考查了三角形的内角和定理,垂直定义和平行四边形的性质,能求出∠B的度数和根据平行四边形的性质得出∠B=∠D是解此题的关键.
8、B
【解析】
设点,则点,,然后根据的长列出方程,求得的值,得到的坐标,解直角三角形求得,就可以求得的周长。
【详解】
解:设点,则点,,
,
四边形是平行四边形,
,
,解得,
,
作于,则,
,
,
的周长,
故选:.
本题考查了反比例函数图象上点的坐标特征,平行四边形的性质,用点,的横坐标之差表示出的长度是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
运用因式分解法可解得.
【详解】
由得
故答案为:
考核知识点:因式分解法解一元二次方程.
10、
【解析】
式子的分子和分母都乘以 即可得出 ,根据b是负数去掉绝对值符号即可.
【详解】
∵b<0,
∴=.
故答案为: .
此题考查分母有理化,解题关键在于掌握运算法则
11、(1-x)2
【解析】
根据题意即可列出代数式.
【详解】
∵某种手机每部售价为元,如果每月售价的平均降低率为,
则一个月后的售价为(1-x)
故两个月后的售价为(1-x)2
此题主要考查列代数式,解题的关键是根据题意找到数量关系.
12、720°
【解析】
根据多边形的外角和等于360°,可求出这个多边形的边数,进而,求出这个多边形的内角和.
【详解】
∵一个多边形的每一个外角都等于60°,
又∵多边形的外角和等于360°,
∴这个多边形的边数=360°÷60°=6,
∴这个多边形的内角和=,
故答案是:720°.
本题主要考查多边形的外角和等于360°以及多边形的内角和公式,掌握多边形的外角和等于360°是解题的关键.
13、
【解析】
根据题意,判断概率类型,分别算出长方形面积和阴影面积,再利用几何概型公式加以计算,即可得到所求概率.
【详解】
解:长方形面积=4×5=20,
阴影面积=,
∴这粒豆子落入阴影部分的概率为:P=,
故答案为:.
本题给出丢豆子的事件,求豆子落入指定区域的概率.着重考查了长方形、三角形面积公式和几何概型的计算等知识,属于基础题.
三、解答题(本大题共5个小题,共48分)
14、(1)50;20;30;(2)图见解析;(3)2000人。
【解析】
(1)根据最强大脑的人数除以占的百分比确定出x的值,进而求出a与b的值即可;
(2)根据a的值,补全条形统计图即可;
(3)由中国诗词大会的百分比乘以5000即可得到结果.
【详解】
解:(1)根据题意得:x=5÷10%=50,a=50×40%=20,;
故答案为:50;20;30;
(2)中国诗词大会的人数为20人,补全条形统计图,如图所示:
(3)根据题意得:5000×40%=2000(名).
则估计该校最喜爱《中国诗词大会》节目的学生有2000名.
此题考查了条形统计图,用样本估计总体,以及统计表,弄清题中的数据是解本题的关键.
15、(1)y=2x+1;(2)
【解析】
(1)利用待定系数法即可求出一次函数的解析式;
(2)利用一次函数解析式求出此函数图象与两轴的交点坐标,再利用三角形的面积公式即可得出答案.
【详解】
(1)设一次函数的解析式为:y=kx+b,
将点A,点B的坐标代入解析式得:
,
解得:,
所以直线的解析式为:y=2x+1,
(2)对于直线y=2x+1,
令x=0,解得:y=1,
令y=0,解得:,
所以函数与x轴,y轴围成的三角形的面积为:.
本题考查了待定系数法求一次函数解析式及一次函数图象上点的坐标特征.熟练应用待定系数法求一次函数解析式是解题的关键.
16、(1)a(a﹣2)2;(2)(x﹣y)(a+b)(a﹣b).
【解析】
(1)原式提取公因式后,利用完全平方公式分解即可;
(2)原式提取公因式后,利用平方差公式分解即可.
【详解】
(1)a3﹣4a2+4a
=a(a2﹣4a+4)
=a(a﹣2)2;
(2)a2(x﹣y)+b2(y﹣x)
=(x﹣y)(a2﹣b2)
=(x﹣y)(a+b)(a﹣b).
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
17、(1) ;(2)2400元.
【解析】
(1)根据题意可得A种塑料袋每天获利(2.4-2)x,B种塑料袋每天获利(3.6-3)(5000-x),共获利y元,列出y与x的函数关系式:y=(2.4-2)x+(3.6-3)(5000-x).
(2)根据题意得2x+3(4500-x)≤10000,解出x的范围.得出y随x增大而减小.
【详解】
(1)由题意得:=
(2)由题意得:≤12000
解得:≥3000
在函数中,<0
∴随的增大而减小
∴当=3000时,每天可获利最多,最大利润=2400
∴该厂每天最多获利2400元.
此题主要考查了一次函数的应用以及不等式组解法,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.
18、5
【解析】
解:原式=.
取a=2,原式.
先根据分式混合运算的法则把原式进行化简,再选取合适的a的值(使分式的分母和除式不为0)代入进行计算即可.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
由已知可得Rt△ABC是等腰直角三角形,且,得出CD=AD=BD=AB=1.
【详解】
∵CA=CB.∠ACB=90°,CD⊥AB,
∴AD=DB,
∴CD=AB=1,
故答案为1.
本题考查了等腰直角三角形的性质,直角三角形斜边中线的性质,解题的关键是灵活运用等腰直角三角形的性质求边的关系.
20、1
【解析】
连接BE,DF交于点O,由题意可证△AEB≌△AFD,可得∠AFD=∠AEB,可证∠EOF=90°,由勾股定理可求解.
【详解】
如图,连接BE、DF交于点O.
∵四边形ABCD是正方形,
∴,.
∵是等腰直角三角形,
∴,,
∴.
在和△中,
∵,,,
∴,
∴.
∵
,
∴,
∴,,,,
∴.
故答案为1.
本题考查了正方形的性质,勾股定理,全等三角形判定和性质,添加恰当的辅助线构造直角三角形是本题的关键.
21、60
【解析】
根据平行线的性质:两直线平行内错角相等,可得∠BOD=50°,再根据对顶角相等可求出∠2.
【详解】
解:如图所示:
∵直线a∥b,∠3=50°,
∴∠BOD=50°,
又∵∠1=∠BOD+∠2,
∠2=∠1-∠BOD=110°-50°=60°.
故本题答案为:60.
平行线的性质及对顶角相等是本题的考点,熟练掌握平行线的性质是解题的关键.
22、①②③④⑤
【解析】
由正方形和折叠的性质得出AF=AB,∠B=∠AFG=90°,由HL即可证明Rt△ABG≌Rt△AFG,得出①正确,设BG=x,则CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+1,由勾股定理求出x=2,得出②正确;由等腰三角形的性质和外角关系得出∠AGB=∠FCG,证出平行线,得出③正确;分别求出△EGC,△AEF的面积,可以判断④,由
,可求出△FGC的面积,故此可对⑤做出判断.
【详解】
解:解:∵四边形ABCD是正方形,
∴AB=AD=DC=6,∠B=D=90°,
∵CD=2DE,
∴DE=1,
∵△ADE沿AE折叠得到△AFE,
∴DE=EF=1,AD=AF,∠D=∠AFE=∠AFG=90°,
∴AF=AB,
∵在Rt△ABG和Rt△AFG中,
,
∴Rt△ABG≌Rt△AFG(HL).
∴①正确;
∵Rt△ABG≌Rt△AFG,
∴BG=FG,∠AGB=∠AGF.
设BG=x,则CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+1.
在Rt△ECG中,由勾股定理得:CG1+CE1=EG1.
∵CG=6-x,CE=4,EG=x+1,
∴(6-x)1+41=(x+1)1,解得:x=2.
∴BG=GF=CG=2.
∴②正确;
∵CG=GF,
∴∠CFG=∠FCG.
∵∠BGF=∠CFG+∠FCG,∠BGF=∠AGB+∠AGF,
∴∠CFG+∠FCG=∠AGB+∠AGF.
∵∠AGB=∠AGF,∠CFG=∠FCG,
∴∠AGB=∠FCG.
∴AG∥CF.
∴③正确;
∵S△EGC=×2×4=6,S△AEF=S△ADE=×6×1=6,
∴S△EGC=S△AFE;
∴④正确,
∵△CFG和△CEG中,分别把FG和GE看作底边,
则这两个三角形的高相同.
∴,
∵S△GCE=6,
∴S△CFG=×6=2.6,
∴⑤正确;
故答案为①②③④⑤.
本题考查了正方形性质,折叠性质,全等三角形的性质和判定,等腰三角形的性质和判定,平行线的判定等知识点的运用,依据翻折的性质找出其中对应相等的线段和对应相等的角是解题的关键.
23、±1
【解析】
根据完全平方式的一般式,计算一次项系数即可.
【详解】
解:∵b为常数,且x2﹣bx+1是完全平方式,
∴b=±1,
故答案为±1.
本题主要考查完全平方公式的系数关系,关键在于一次项系数的计算.
二、解答题(本大题共3个小题,共30分)
24、.(1)k=-1,b=1 (1)-1
【解析】
(1)由图可直接写出的坐标,将这两点代入联立求解可得出和的值;
(1)由(1)的关系式,将代入可得出函数值.
【详解】
解:(1)由图可得:A(-1,3),B(1,-3),
将这两点代入一次函数y=kx+b得:,
解得:
∴k=-1,b=1;
(1)将x=代入y=-1x+1得:y=-1.
本题考查待定系数法求一次函数解析式,关键在于看出图示的坐标信息.
25、(1)27;(2)
【解析】
(1)根据根与系数的关系,求出和 的值,即可得到答案;
(2)根据题意,可得,计算即可得到答案.
【详解】
解:(1)∵是一元二次方程的两实数根,
∴,,
∴;
(2)根据题意,,
∴;
本题考查了一元二次方程的根与系数的关系,解题的关键是掌握,,然后变形计算即可.
26、(1);(2);拆痕DE的长为; (3)点Q坐标为
【解析】
(1)根据B点的坐标即可求得AC的长度.
(2)首先根据已知条件证明,再根据相似比例计算DF、CD的长度
即可计算出D点的坐标,再证明,根据EF=DF,即可计算的DE的长度.
(3)根据等腰三角形的性质,分类讨论第一种情况当时;第二种情况当时;第三种情况当时,分别计算即可.
【详解】
解:(1)
(2),由折叠可得:
,.
∵四边形OABC是矩形,
∴拆痕DE的长为
(3)由(2)可知,,
若以P、D、E、Q为顶点的四边形是菱形,则必为等腰三角形。
当时,可知,
此时PE为对角线,可得
当时,可知,此时DP为对角线,可得;
当时,P与C重合,Q与A重合,
综上所述,满足条件的点Q坐标为
本题主要考查菱形的基本性质,难点在于第三问中的等腰三角形的分类讨论,根据等腰三角形的腰进行分类,再根据腰相等进行计算.
题号
一
二
三
四
五
总分
得分
成本(元/个)
售价 (元/个)
2
2.4
3
3.6
山东省济宁市曲阜师范大附属实验学校2023-2024学年九上数学期末检测模拟试题含答案: 这是一份山东省济宁市曲阜师范大附属实验学校2023-2024学年九上数学期末检测模拟试题含答案,共8页。试卷主要包含了分式方程的根是等内容,欢迎下载使用。
山东省济宁市曲阜师大附属实验学校2023-2024学年九上数学期末调研模拟试题含答案: 这是一份山东省济宁市曲阜师大附属实验学校2023-2024学年九上数学期末调研模拟试题含答案,共8页。
山东省济宁市曲阜师范大附属实验学校2023-2024学年数学八年级第一学期期末质量检测模拟试题含答案: 这是一份山东省济宁市曲阜师范大附属实验学校2023-2024学年数学八年级第一学期期末质量检测模拟试题含答案,共6页。试卷主要包含了计算,得,如图,≌,下列结论正确的是,下列各数中,不是无理数的是,若分式有意义,则a的取值范围是,下列图标中,不是轴对称图形的是等内容,欢迎下载使用。