2024年湖南省益阳市资阳区国基实验学校数学九年级第一学期开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列图形中,既是轴对称图形又是中心对称图形的是
A.B.C.D.
2、(4分)不等式组的解集在数轴上表示正确的是
A.B.C.D.
3、(4分)要使矩形ABCD为正方形,需要添加的条件是( )
A.AB=BCB.AD=BCC.AB=CDD.AC=BD
4、(4分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标( )
A.(﹣3,4)B.(﹣2,3)C.(﹣5,4)D.(5,4)
5、(4分)某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为( )
A.6,6B.7,6C.7,8D.6,8
6、(4分)A、B两地相距20千米,甲、乙两人都从A地去B地,图中和分别表示甲、乙两人所走路程(千米)与时刻(小时)之间的关系.下列说法:
①乙晚出发1小时;
②乙出发3小时后追上甲;
③甲的速度是4千米/小时;
④乙先到达B地.
其中正确的个数是( )
A.1B.2C.3D.4
7、(4分)在下列各式中,是分式的有( )
A.2个B.3个C.4个D.5个
8、(4分)已知平行四边形的一边长为10,则对角线的长度可能取下列数组中的( ).
A.4、8B.10、32C.8、10D.11、13
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中,O为坐标原点,A(1,3),B(2,1),直角坐标系中存在点C,使得O,A,B,C四点构成平行四边形,则C点的坐标为______________________________.
10、(4分)根据中华人民共和国2017年国民经济和社会发展统计公报,我国年农村贫困人口统计如图所示根据统计图中提供的信息,预估2018年年末全国农村贫困人口约为______万人,你的预估理由是______.
11、(4分)用换元法解方程时,如果设,那么所得到的关于的整式方程为_____________
12、(4分)如图,菱形ABCD的对角线长分别为a、b,以菱形ABCD各边的中点为顶点作矩形,然后再以矩形的中点为顶点作菱形,……,如此下去,得到四边形A2019B2019C2019D2019的面积用含a,b的代数式表示为___.
13、(4分)当0<m<3时,一元二次方程x2+mx+m=0的根的情况是_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知△ABC中,DE∥BC,S△ADE︰S四边形BCED=1︰2,,试求DE的长.
15、(8分)先化简,再求值:(x+2)2﹣4x(x+1),其中x=.
16、(8分)某校举办了一次趣味数学党赛,满分100分,学生得分均为整数,这次竞赛中,甲、乙两组学生成绩如下(单位:分)
甲组:30,60,60,60,60,60,70,90,90,100
乙组:50,60,60,60,70,70,70,70,80,90.
(1)以生成绩统计分析表中a=_________分,b=_________分.
(2)小亮同学说:“这次赛我得了70分,在我们小组中属中游略偏上!”双察上面表格判断,小亮可能是甲、乙哪个组的学生?并说明理由。
(3)计算乙组成的方差,如果你是该校数学竞赛的教练员,现在需要你选一组同学代表学校参加复赛,你会进择哪一组?并说明理由。
17、(10分)已知:D,E分别为△ABC的边AB,AC的中点.求证:DE∥BC,且DE=BC
18、(10分)四边形中,,,,,垂足分别为、.
(1)求证:;
(2)若与相交于点,求证:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算:﹣=_____.
20、(4分)分解因式:____________
21、(4分)图中的虚线网格是等边三角形,它的每一个小三角形都是边长为1的等边三角形.
(1)如图①,连接相邻两个小正三角形的顶点A,B,则AB的长为_______
(2)在如图②所示的网格中,用无刻度的直尺,画一个斜边长为的直角三角形,且它的顶点都在格点上.
22、(4分)计算:=__________.
23、(4分)如果乘坐出租车所付款金额(元)与乘坐距离(千米)之间的函数图像由线段、线段和射线组成(如图所示),那么乘坐该出租车8(千米)需要支付的金额为__________元.
二、解答题(本大题共3个小题,共30分)
24、(8分)关于的方程,其中分别是的三边长.
(1)若方程有两个相等的实数根,试判断的形状,并说明理由;
(2)若为等边三角形,试求出这个方程的解.
25、(10分)定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。
(1)如图1,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段AC,同时我们还发现损矩形中有公共边的两个三角形角的特点,在公共边的同侧的两个角是相等的。如图1中:△ABC和△ABD有公共边AB,在AB同侧有∠ADB和∠ACB,此时∠ADB=∠ACB;再比如△ABC和△BCD有公共边BC,在CB同侧有∠BAC和∠BDC,此时∠BAC=∠BDC。请再找一对这样的角来 =
(2)如图2,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连结BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由。
(3)在第(2)题的条件下,若此时AB=,BD=,求BC的长。
26、(12分)如图所示,P(a,3)是直线y=x+5上的一点,直线 y=k1x+b与双曲线相交于P、Q(1,m).
(1)求双曲线的解析式及直线PQ的解析式;
(2)根据图象直接写出不等式>k1x+b的解集.
(3)若直线y=x+5与x轴交于A,直线y=k1x+b与x轴交于M求△APQ的面积
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;
B. 不是轴对称图形,是中心对称图形,故不符合题意;
C. 是轴对称图形,但不是中心对称图形,故不符合题意;
D. 既是轴对称图形又是中心对称图形,故符合题意.
故选D.
本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.
2、C
【解析】
试题分析:解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,
.
不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此,不等式组的解集﹣2≤x<1在数轴上表示为C.
故选C.
3、A
【解析】
根据有一组邻边相等的矩形是正方形即可解答.
【详解】
∵四边形ABCD是矩形,
∴要使矩形ABCD成为一个正方形,需要添加一个条件,这个条件可以是:AB=BC或AC⊥BD.
故选:A.
本题考查了正方形的判定,解答此题的关键是熟练掌握正方形的判定定理,正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.
4、C
【解析】
利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.
【详解】
解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,
∴AB=5,
∴DO=4,
∴点C的坐标是:(﹣5,4).
故选C.
此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.
5、B
【解析】
首先把所给数据按从小到大的顺序重新排序,然后利用中位数和众数的定义就可以求出结果.
【详解】
解:把已知数据按从小到大的顺序排序后为5元,1元,1元,7元,8元,9元,10元,
∴中位数为7
∵1这个数据出现次数最多,
∴众数为1.
故选B.
本题结合众数与中位数考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.众数只要找次数最多的即可.
6、C
【解析】
试题分析:根据函数的图像直接读取信息:①乙比甲晚出发1小时,正确;
②乙应出发2小时后追上甲,错误;
③甲的速度为12÷3=4(千米/小时),正确;甲到达需要20÷4=5(小时);乙的速度为12÷2=6(千米/小时),SI④乙到达需要的时间为20÷6=3(小时),即乙在甲出发4小时到达,甲5小时到达,故乙比甲先到.正确.
故选C
考点:一次函数的图像与性质
7、B
【解析】
依据分式的定义即可判断.
【详解】
(x+3)÷(x-1)=,
,(x+3)÷(x-1)=,这3个式子的分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.
故式子中是分式的有3个.
故选:B.
此题考查了分式的定义,熟练掌握分式的定义是解题得到关键.
8、D
【解析】
依题意画出图形,由四边形ABCD是平行四边形,得OA=AC,OB=BD,又由AB=10,利用三角形的三边关系,即可求得答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=AC,OB=BD,
∵AB=10,
对选项A,∵AC=4,BD=8,
∴OA=2,OB=4,
∵OA+OB=6<10,
∴不能组成三角形,
故本选项错误;
对选项B,∵AC=10,BD=32,
∴OA=5,OB=16,
∵OA+AB=15<16,
∴不能组成三角形,
故本选项错误;
对选项C,∵AC=8,BD=10,
∴OA=4,OB=5,
∵OA+OB=9<10,
∴不能组成三角形,
故本选项错误;
对选项D,∵AC=11,BD=13,
∴OA=5.5,OB=6.5,
∵OA+OB=12>10,
∴能组成三角形,
故本选项正确.
故选:D.
此题考查了平行四边形的性质以及三角形的三边关系.注意掌握数形结合思想的应用.特别注意实际判断中使用:满足两个较小边的和大于最大边,则可以构成三角形.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、 (3,4)或(1,-2)或(-1,2)
【解析】
由平行四边形的性质:平行四边形的对边平行且相等,即可求得点C的坐标;注意三种情况.
【详解】
如图所示:
∵以O、A、B、C为顶点的四边形是平行四边形,O(0,0),A(1,3),B(2,0),
∴三种情况:
①当AB为对角线时,点C的坐标为(3,4);
②当OB为对角线时,点C的坐标为(1,-2);
③当OA为对角线时,点C的坐标为(-1,2);
故答案是:(3,4)或(1,-2)或(-1,2).
考查了平行四边形的性质:平行四边形的对边平行且相等.解题的关键是要注意数形结合思想的应用.
10、1700 由统计图可知,2016~2017减少约1300万,则2017~2018减少约为1300万,故2018年农村贫困人口约为1700万.
【解析】
根据统计图可以得到得到各年相对去年减少的人数,从而可以预估2018年年末全国农村贫困人口约为多少万人,并说明理由.
【详解】
解:2018年年末全国农村贫困人口约为1700万人,
预估理由:由统计图可知,2016~2017减少约1300万,则2017~2018减少约为1300万,故2018年农村贫困人口约为1700万,
故答案为1700、由统计图可知,2016~2017减少约1300万,则2017~2018减少约为1300万,故2018年农村贫困人口约为1700万.
本题考查用样本估计总体、条形统计图,解题的关键是明确条形统计图的特点,从中得到必要的解题信息.
11、
【解析】
可根据方程特点设,则原方程可化为-y=1,再去分母化为整式方程即可.
【详解】
设,则原方程可化为:-y=1,
去分母,可得1-y2=y,
即y2+y-1=1,
故答案为:y2+y-1=1.
本题考查用换元法解分式方程的能力.用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,再将分式方程可化为整式方程.
12、
【解析】
根据三角形中位线定理,逐步得到小长方形的面积,得到规律即可求解.
【详解】
∵菱形ABCD的对角线长分别为a、b,AC⊥BD,
∴S四边形ABCD=
∵以菱形ABCD各边的中点为顶点作矩形,根据中位线的性质可知
S四边形A1B1C1D1=S四边形ABCD=
…
则S四边形AnBnCnDn=S四边形ABCD=
故四边形A2019B2019C2019D2019的面积用含a,b的代数式表示为.
故填:.
此题主要考查特殊平行四边形的性质,解题的关键是根据题意找到规律进行求解.
13、无实数根
【解析】
根据一元二次方程根的判别式判断即可
【详解】
一元二次方程x2+mx+m=0,则△=m2-4m=(m-2)2-4,当0<m<3时,△<0,故无实数根
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
解:因为DE∥BC,
所以△ADE∽△ABC,
所以.
又S△ADE︰S四边形BCED=1︰2,
所以S△ADE︰S△ABC=1︰3,
即.而,所以.
15、原式=﹣3x1+4,当x=时,原式=﹣1.
【解析】
试题分析:原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.
试题解析:原式=x1+4x+4﹣4x1﹣4x=﹣3x1+4,
当x=时,原式=﹣6+4=﹣1.
考点:整式的化简求值.
16、(1)60,68;(2)小亮在甲组;(3)乙组的方差是116;乙组的方差小于甲组,选乙组同学代表学校参加复赛.
【解析】
(1)根据中位数和平均数的计算公式分别进行解答即可求出a,b的值;
(2)根据中位数的意义进行判断即可;
(3)根据方差公式先求出乙组的方差,再根据方差的意义即可得出答案.
【详解】
解:(1)甲组的中位数a=(分);
乙组的平均数是:(50+60+60+60+70+70+70+70+80+90)÷10=68(分);
故答案为:60,68;
(2)根据中位数判断,甲组中位数60分,乙组中位数70分,所以小亮是在甲组.
(3)乙组的方差是:[(50-68)2+3×(60-68)2+4×(70-68)2+(80-68)2+(90-68)2]=116;
∵乙组的方差小于甲组,
∴选乙组同学代表学校参加复赛.
本题考查了平均数、中位数及方差,熟练掌握平均数、中位数及方差的定义是解题的关键.
17、证明见解析
【解析】
延长DE至F,使EF=DE,连接CF,通过证明△ADE≌△CFE和证明四边形BCFD是平行四边形即可证明三角形的中位线平行于三角形的第三边并且等于第三边的一半.
【详解】
证明:延长DE到F,使EF=DE.连接CF.
在△ADE和△CFE中,
∵AE=CE,∠AED=∠CEF,DE=FE,
∴△ADE≌△CFE.
∴AD=CF,∠A=∠ECF
∴AD∥CF,
即BD∥CF.
又∵BD=AD=CF,
∴四边形DBCF是平行四边形.
∴DE∥BC,且DF=BC.
∴DE=DF=BC.
本题考查三角形的中位线定理的证明,解题关键是掌握等三角形的判定和全等三角形的性质以及平行四边形的判定和性质.
18、(1)证明见解析;(2)证明见解析.
【解析】
(1)根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论;
(2)如图,连接AC交BD于O,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的性质即可得到结论.
【详解】
证明:(1)∵BE=DF,
∴BE-EF=DF-EF,
即BF=DE,
∵AE⊥BD,CF⊥BD,
∴∠AED=∠CFB=90°,
在Rt△ADE与Rt△CBF中,
,
∴Rt△ADE≌Rt△CBF;
(2)如图,连接AC交BD于O,
∵Rt△ADE≌Rt△CBF,
∴∠ADE=∠CBF,
∴AD∥BC,又AD=BC,
∴四边形ABCD是平行四边形,
∴AO=CO.
本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据二次根式的性质,进行计算即可解答
【详解】
解:﹣.
故答案为:﹣ .
此题考查二次根式的化简,解题关键在于掌握运算法则
20、a(x+5)(x-5)
【解析】
先公因式a,然后再利用平方差公式进行分解即可.
【详解】
故答案为a(x+5)(x-5).
21、 (1);(2)见解析.
【解析】
(1)利用等边三角形的性质,解直角三角形即可解决问题.
(2)利用数形结合的思想解决问题即可(答案不唯一).
【详解】
解:(1)AB=2×1×cs30°=,
故答案为:.
(2)如图②中,△DEF即为所求.
本题考查作图——应用与设计,等边三角形的性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
22、1
【解析】
根据分式的加法法则运算即可.
【详解】
原式====1,
故答案为1.
本题考查了分式的加法,分母相同分子相加是解决本题的重点.
23、1
【解析】
根据图象可知,8(千米)处于图中BC段,用待定系数法求出线段BC的解析式,然后令求出相应的y的值即可.
【详解】
根据图象可知 位于线段BC上,
设线段BC的解析式为
将代入解析式中得
解得
∴线段BC解析式为 ,
当时,,
∴乘坐该出租车8(千米)需要支付的金额为1元.
故答案为:1.
本题主要考查一次函数的实际应用,掌握待定系数法是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)是直角三角形;理由见解析;(2),.
【解析】
(1)根据根的判别式为0,计算出的关系,即可判定;
(2)根据题意,将方程进行转化形式,即可得解.
【详解】
(1)直角三角形
根据题意,得
即
所以是直角三角形
(2)根据题意,可得
解出
此题主要考查一元二次方程和三角形的综合应用,熟练运用,即可解题.
25、(1)∠ABD=∠ACD;(2)四边形ACEF为正方形,理由见解析;(3)5.
【解析】
(1)以AD为公共边,有∠ABD=∠ACD;
(2)证明△ADC是等腰直角三角形,得AD=CD,则AE=CF,根据对角线相等的菱形是正方形可得结论;
(3)如图2,作辅助线构建直角三角形,证明△ABC≌△CHE,得CH=AB=3,根据平行线等分线段定理可得BG=GH=4,从而得结论.
【详解】
解:(1)由图1得:△ABD和△ADC有公共边AD,在AD同侧有∠ABD和∠ACD,此时∠ABD=∠ACD;
(2)四边形ACEF为正方形,理由是:
∵∠ABC=90°,BD平分∠ABC,
∴∠ABD=∠CBD=45°
∴∠DAC=∠CBD=45°
∵四边形ACEF是菱形,
∴AELCF,
∴∠ADC=90°,
∴△ADC是等腰直角三角形,
∴AD=CD,.AE=CF,
∴菱形ACEF是正方形;
(3)如图2,过D作DG⊥BC于G,过E作EH⊥BC,交BC的延长线于H,
∵∠DBG=45°,
∴△BDG是等腰直角三角形,BD=4,
∵BG=4,四边形ACEF是正方形,
∴AC=CE,∠ACE=90°,AD=DE,
易得△ABC≌△CHE,
∴CH=AB=3,AB//DG//EH,AD=DE,
∴BG=GH=4,
∴CG=4-3=1,
∴BC=BG+CG=4+1=5.
本题是四边形的综合题,也是新定义问题,考查了损矩形和损矩形的直径的概念,平行线等分线段定理,菱形的性质,正方形的判定等知识,认真阅读理解新定义,第3问有难度,作辅助线构建全等三角形是关键.
26、(1)双曲线的解析式为,线PQ的解析式为:;
(2)-2<x<0或x>-1;
(3)△APQ的面积为
【解析】
试题分析:(1)利用代入法求出a的值,然后根据交点可求出m的值,从而求出解析式;
(2)根据图像可直接求解出取值范围;
(3)分别求出交点,利用割补法求三角形的面积即可.
试题解析:(1)把代入中得
∴p(-2,3)
把代入中,得k=-6
∴双曲线解析式为
把代入中,得m=-3
∴a(1,-6)
把时,,时,代入
得: ∴
直线pa解析式为:
②-2<x<0 或x>-1
③在与中,y=0 解设x=-1
∴M(-1,0)
∴
=
=
∴△APO面积为
【详解】
请在此输入详解!
题号
一
二
三
四
五
总分
得分
批阅人
组别
平均分
中位数
方差
甲组
68
a
376
乙组
b
70
湖南省益阳市资阳区多校联考2024-2025学年九年级上学期开学考试数学试题(原卷版): 这是一份湖南省益阳市资阳区多校联考2024-2025学年九年级上学期开学考试数学试题(原卷版),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖南省益阳市资阳区多校联考2024-2025学年九年级上学期开学考试数学试题(无答案): 这是一份湖南省益阳市资阳区多校联考2024-2025学年九年级上学期开学考试数学试题(无答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖南省益阳市资阳区国基实验学校2023-2024学年九上数学期末学业质量监测试题含答案: 这是一份湖南省益阳市资阳区国基实验学校2023-2024学年九上数学期末学业质量监测试题含答案,共9页。试卷主要包含了﹣2019的倒数的相反数是,如图等内容,欢迎下载使用。