|试卷下载
搜索
    上传资料 赚现金
    2024年湖南省湘西数学九上开学质量检测试题【含答案】
    立即下载
    加入资料篮
    2024年湖南省湘西数学九上开学质量检测试题【含答案】01
    2024年湖南省湘西数学九上开学质量检测试题【含答案】02
    2024年湖南省湘西数学九上开学质量检测试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年湖南省湘西数学九上开学质量检测试题【含答案】

    展开
    这是一份2024年湖南省湘西数学九上开学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)某鞋店试销一款学生运动鞋,销量情况如图所示,鞋店经理要关心哪种型号的鞋是否畅销,下列统计量最有意义的是( )
    A.平均数B.中位数C.众数D.方差
    2、(4分)如图,在矩形ABCD中,AB=8,BC=6,EF经过对角线的交点O,则图中阴影部分的面积是( )
    A.6B.12C.15D.24
    3、(4分)若m+n-p=0,则m的值是( )
    A.-3B.-1C.1D.3
    4、(4分)把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是( )
    A.1<m<7B.3<m<4C.m>1D.m<4
    5、(4分)若点P(﹣3+a,a)在正比例函数y=﹣x的图象上,则a的值是( )
    A.B.﹣C.1D.﹣1
    6、(4分)甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是( )
    A.甲的速度是70米/分B.乙的速度是60米/分
    C.甲距离景点2100米D.乙距离景点420米
    7、(4分)如图,在中,,以顶点为圆心,适当长为半径画弧,分别交边于点,现分别以为圆心,以大于的长为半径画弧,两弧交于点,作射线交边于点,若则的面积是( )
    A.10B.20C.30D.40
    8、(4分)到三角形三个顶点距离相等的点是( )
    A.三角形三条边的垂直平分线的交点
    B.三角形三条角平分线的交点
    C.三角形三条高的交点
    D.三角形三条边的中线的交点
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A所代表的正方形的边长是_____.
    10、(4分)如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是_____.
    11、(4分)菱形的两条对角线的长分别为6和8,则这个菱形的周长为_____.
    12、(4分)某校生物小组7人到校外采集标本,其中2人每人采集到3件,3人每人采集到4件,2人每人采集到5件,则这个小组平均每人采集标本___________件.
    13、(4分)如图,在▱ABCD中,再添加一个条件_____(写出一个即可),▱ABCD是矩形(图形中不再添加辅助线)
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在直角坐标系中,点为坐标原点,点,分别在轴,轴的正半轴上,矩形的边,,反比例函数的图象经过边的中点.
    (1)求该反比例函数的表达式;
    (2)求的面积.
    15、(8分)如图,在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=6.8cm,r=1.6cm,请利用因式分解求出剩余阴影部分的面积(结果保留π)
    16、(8分)已知某企业生产的产品每件出厂价为70元,其成本价为25元,同时在生产过程中,平均每生产一件产品有1 m3的污水排出,为达到排污标准,现有以下两种处理污水的方案可供选择.
    方案一:将污水先净化处理后再排出,每处理1 m3污水的费用为3元,并且每月排污设备损耗为24 000元.
    方案二:将污水排到污水厂统一处理,每处理1 m3污水的费用为15元,设该企业每月生产x件产品,每月利润为y元.
    (1)分别写出该企业一句方案一和方案二处理污水时,y与x的函数关系式;
    (2)已知该企业每月生产1 000件产品,如果你是该企业的负责人,那么在考虑企业的生产实际前提下,选择哪一种污水处理方案更划算?
    17、(10分)如图,△ABC的中线BD,CE交于点O,F,G分别是BO,CO的中点.
    (1)填空:四边形DEFG是 四边形.
    (2)若四边形DEFG是矩形,求证:AB=AC.
    (3)若四边形DEFG是边长为2的正方形,试求△ABC的周长.
    18、(10分)如图,直线m的表达式为y =﹣3x+3,且与x轴交于点B,直线n经过点A(4,0),且与直线m交于点C(t,﹣3)
    (1)求直线n的表达式.
    (2)求△ABC的面积.
    (3)在直线n上存在异于点C的另一点P,使△ABP与△ABC的面积相等,请直接写出点P的坐标是 .
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为______.
    20、(4分)平面直角坐标系中,点M(-3,-4)到x轴的距离为______________________.
    21、(4分)在平行四边形ABCD中,,则的度数是______°.
    22、(4分)20190=__________.
    23、(4分)若已知方程组的解是,则直线y=-kx+b与直线y=x-a的交点坐标是________。
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,将矩形纸片()折叠,使点刚好落在线段上,且折痕分别与边,相交于点,,设折叠后点,的对应点分别为点,.
    (1)判断四边形的形状,并证明你的结论;
    (2)若,且四边形的面积,求线段的长.
    25、(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.
    (1)求证:△AFD≌△BFE;
    (2)求证:四边形AEBD是菱形;
    (3)若DC=,tan∠DCB=3,求菱形AEBD的面积.
    26、(12分)某市需调查该市九年级男生的体能状况,为此抽取了50名九年级男生进行引体向上个数测试,测试情况绘制成表格如下:
    (1)求这次抽样测试数据的平均数、众数和中位数;
    (2)在平均数、众数和中位数中,你认为用哪一个统计量作为该市九年级男生引体向上项目测试的合格标准个数较为合适?简要说明理由;
    (3)如果该市今年有3万名九年级男生,根据(2)中你认为合格的标准,试估计该市九年级男生引体向上项目测试的合格人数是多少?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.
    【详解】
    对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.
    故选:C.
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    2、B
    【解析】
    试题解析:在△AOE和△COF中,
    ∠EAO=∠FCO,AO=CO,∠COF=∠EOA,
    ∴△AOE≌△COF,则△AOE和△COF面积相等,
    ∴阴影部分的面积与△CDO的面积相等,
    又∵矩形对角线将矩形分成面积相等的四部分,
    ∴阴影部分的面积为=1.
    故选B.
    考点:矩形的性质.
    3、A
    【解析】
    分析:先由m+n﹣p=0,得出m﹣p=﹣n,m+n=p,n﹣p=﹣m,再根据m(﹣)+n(﹣)﹣p(+)=+﹣代入化简即可.
    详解:∵m+n﹣p=0,∴m﹣p=﹣n,m+n=p,n﹣p=﹣m,∴m(﹣)+n(﹣)﹣p(+)=﹣+﹣﹣﹣=+﹣=+﹣=﹣1﹣1﹣1=﹣1.
    故选A.
    点睛:本题考查了分式的加减,用到的知识点是约分、分式的加减,关键是把原式变形为+﹣.
    4、C
    【解析】
    直线y=-x+3向上平移m个单位后可得:y=-x+3+m,求出直线y=-x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.
    【详解】
    解:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,
    联立两直线解析式得:,解得:,
    即交点坐标为,
    ∵交点在第一象限,
    ∴,
    解得:m>1.
    故选:C.
    本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第一象限的点的横坐标大于2、纵坐标大于2.
    5、C
    【解析】
    把点P坐标代入正比例函数解析式得到关于a的方程,解方程即可得.
    【详解】
    解:由题意得:a=﹣(-3+a),
    解得:a=1,
    故选C.
    本题考查了正比例函数图象上点的坐标特征,熟知正比例函数图象上点的坐标一定满足正比例函数的解析式是解题的关键.
    6、D
    【解析】
    根据图中信息以及路程、速度、时间之间的关系一一判断即可.
    【详解】
    甲的速度==70米/分,故A正确,不符合题意;
    设乙的速度为x米/分.则有,660+24x-70×24=420,
    解得x=60,故B正确,本选项不符合题意,
    70×30=2100,故选项C正确,不符合题意,
    24×60=1440米,乙距离景点1440米,故D错误,
    故选D.
    本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.
    7、B
    【解析】
    根据题意可知AP为∠CAB的平分线,由角平分线的性质得出CD=DE,再由三角形的面积公式可得出结论.
    【详解】
    由题意可知AP为∠CAB的平分线,过点D作DE⊥AB于点E,
    ∵∠C=90°,CD=1,
    ∴CD=DE=1.
    ∵AB=10,
    ∴S△ABD=AB•DE=×10×1=2.
    故选B.
    本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.
    8、A
    【解析】
    根据线段垂直平分线上的点到两端点的距离相等解答.
    【详解】
    解:∵线段垂直平分线上的点到线段两个端点的距离相等,
    ∴到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.
    故选:A.
    本题考查了线段垂直平分线的性质,解题的关键是熟知线段垂直平分线的性质是:线段垂直平分线上的点到两端点的距离相等.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据正方形的性质可得出面积为100、36的正方形的边长,再利用勾股定理即可求出字母A所代表的正方形的边长,此题得解.
    【详解】
    面积是100的正方形的边长为10,面积是36的正方形的边长为6,∴字母A所代表的正方形的边长==1.
    故答案为:1.
    本题考查了勾股定理以及正方形的性质,牢记“在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方”是解题的关键.
    10、175°
    【解析】
    如图所示,∵∠ADC、∠BCD的平分线交于点O1,
    ∴∠O1DC+∠O1CD=(∠ADC+∠DCB),
    ∵∠O1DC、∠O1CD的平分线交于点O2,
    ∴∠O2DC+∠O2CD=(∠O1DC+∠O1CD)=(∠ADC+∠DCB),
    同理可得,∠O3DC+∠O3CD=(∠O2DC+∠O2CD)=(∠ADC+∠DCB),
    由此可得,∠O5DC+∠O5CD=(∠O4DC+∠O4CD)=(∠ADC+∠DCB),
    ∴△CO5D中,∠CO5D=180°﹣(∠O5DC+∠O5CD)=180°﹣(∠ADC+∠DCB),
    又∵四边形ABCD中,∠DAB+∠ABC=200°,
    ∴∠ADC+∠DCB=160°,
    ∴∠CO5D=180°﹣×160°=180°﹣5°=175°,
    故答案为175°.
    11、1
    【解析】
    根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.
    【详解】
    解:如图,根据题意得AO=×8=4,BO=×6=3,
    ∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD.
    ∴△AOB是直角三角形.
    ∴.
    ∴此菱形的周长为:5×4=1
    故答案为:1.
    12、4
    【解析】
    分析:根据加权平均数的计算公式计算即可.
    详解:.
    故答案为:4.
    点睛: 本题重点考查了加权平均数的计算公式,加权平均数:(其中w1、w2、……、wn分别为x1、x2、……、xn的权数).
    13、AC=BD
    【解析】
    根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.
    【详解】
    添加的条件是AC=BD,
    理由是:∵AC=BD,四边形ABCD是平行四边形,
    ∴平行四边形ABCD是矩形,
    故答案为:AC=BD
    本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2).
    【解析】
    (1)根据,求出C点坐标,再根据为的中点,得到D点坐标,再用待定系数法即可求解函数解析式;
    (2)先求出E点坐标,利用割补法即可求出的面积.
    【详解】
    解:(1)∵,,
    ∴.
    ∵为的中点,
    ∴.代入可得,
    ∴.
    (2)将代入得,
    ∴.
    ∴矩形.
    此题主要考查反比例函数与几何综合,解题的关键是熟知待定系数法的应用.
    15、36πcm2
    【解析】
    用大圆的面积减去4个小圆的面积即可得到剩余阴影部分的面积,分解因式然后把R和r的值代入计算出对应的代数式的值.
    【详解】
    阴影部分面积=πR2-4πr2
    =π(R2-4r2)
    =π(R-2r)(R+2r)
    =π×﹙6.8+2×1.6﹚×﹙6.8-2×1.6﹚
    =36π(cm2).
    本题考查因式分解的运用,看清题意利用圆的面积计算公式列出代数式,进一步利用提取公因式法和平方差公式因式分解解决问题.
    16、(1)选择方案一时,月利润为y1=42x-24 000;选择方案二时,月利润为y2=30x;(2)选择方案一更划算.
    【解析】
    (1)方案一的等量关系是利润=产品的销售价-成本价-处理污水的费用-设备损耗的费用,方案二的等量关系是利润=产品的销售价-成本价-处理污水的费用.可根据这两个等量关系来列出关于利润和产品件数之间的函数关系式;
    (2)可将(1)中得出的关系式进行比较,判断出哪个方案最省钱.
    【详解】
    解 (1)因为工厂每月生产x件产品,每月利润为y万元,由题意得
    选择方案一时,月利润为y1=(70-25)x-(3x+24 000)=42x-24 000,
    选择方案二时,月利润为y2=(70-25)x-15x=30x;
    (2)当x=1 000时,y1=42x-24 000=18 000,
    y2=30x=30 000,
    ∵y1<y2.
    ∴选择方案二更划算.
    本题考查的是一次函数的综合运用,熟练掌握一次函数是解题的关键.
    17、(1)平行;(2)见解析;(3).
    【解析】
    (1)根据三角形中位线定理得出DE∥BC,DE=BC,FG∥BC,FG=BC,那么DE∥FG,DE=FG,利用有一组对边平行且相等的四边形是平行四边形即可得出四边形DEFG是平行四边形;
    (2)先由矩形的性质得出OD=OE=OF=OG.再根据重心的性质得到OB=2OD,OC=2OE,等量代换得出OB=OC.利用SAS证明△BOE≌△COD,得出BE=CD,然后根据中点的定义即可证明AB=AC;
    (3)连接AO并延长交BC于点M,先由三角形中线的性质得出M为BC的中点,由(2)得出AB=AC,根据等腰三角形三线合一的性质得出AM⊥BC,再由三角形中位线定理及三角形重心的性质得出BC=2FG=1,AM=AO=6,由勾股定理求出AB=2,进而得到△ABC的周长.
    【详解】
    (1)解:∵△ABC的中线BD,CE交于点O,
    ∴DE∥BC,DE=BC,
    ∵F,G分别是BO,CO的中点,
    ∴FG∥BC,FG=BC,
    ∴DE∥FG,DE=FG,
    ∴四边形DEFG是平行四边形.
    故答案为平行;
    (2)证明:∵四边形DEFG是矩形,
    ∴OD=OE=OF=OG.
    ∵△ABC的中线BD,CE交于点O,
    ∴点O是△ABC的重心,
    ∴OB=2OD,OC=2OE,
    ∴OB=OC.
    在△BOE与△COD中,

    ∴△BOE≌△COD(SAS),
    ∴BE=CD,
    ∵E、D分别是AB、AC中点,
    ∴AB=AC;
    (3)解:连接AO并延长交BC于点M.
    ∵三角形的三条中线相交于同一点,△ABC的中线BD、CE交于点O,
    ∴M为BC的中点,
    ∵四边形DEFG是正方形,
    由(2)可知,AB=AC,
    ∴AM⊥BC.
    ∵正方形DEFG边长为2,F,G分别是BO,CO的中点,
    ∴BC=2FG=1,BM=MC=BC=2,AO=2EF=1,
    ∴AM=AO=6,
    ∴AB===2,
    ∴△ABC的周长=AB+AC+BC=1+1.
    本题考查了平行四边形的判定与性质,三角形中位线性质定理,矩形的性质,三角形重心的性质,等腰三角形的性质,全等三角形的判定与性质,其中三角形的中位线性质定理为证明线段相等和平行提供了依据.
    18、(1)n的表达式为;(2)S△ABC的面积是4.5;(3)P点坐标为(6,3).
    【解析】
    (1)把C点坐标代入直线m,可求得t,再由待定系数法可求得直线n的解析式;
    (2)可先求得B点坐标,则可求得AB,再由C点坐标可求得△ABC的面积;
    (3)由面积相等可知点P到x轴的距离和点C到y轴的距离相等,可求得P点纵坐标,代入直线n的解析式可求得P点坐标.
    【详解】
    (1)∵直线m过C点,
    ∴-3=-3t+3,解得t=2,
    ∴C(2,-3),
    设直线n的解析式为y=kx+b,
    把A、C两点坐标代入可得

    解得,
    ∴直线n的解析式为y=1.5x-6;
    (2)在y=-3x+3中,令y=0,可得0=-3x+3,解得x=1,
    ∴B(1,0),且A(4,0),
    ∴AB=4-1=3,且C点到x轴的距离h=3,
    ∴S△ABC=
    (3)由点P在直线n上,故可设P点坐标为(x,1.5x-6),
    ∵S△ABC=S△ABP,
    ∴P到x轴的距离=3,
    ∵C、P两点不重合,
    ∴P点的纵坐标为3,
    ∴1.5x-6=3,解得x=6,
    ∴P点坐标为(6,3).
    本题主要考查一次函数的应用,掌握两直线的交点坐标满足每条直线的解析式是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(﹣1,0)
    【解析】
    根据勾股定理求出AB的长,由AB=AC即可求出C点坐标.
    【详解】
    解:∵A(4,0),B(0,3),
    ∴OA=4,OB=3,
    ∴AB==5
    ∴AC=5,
    ∴点C的横坐标为:4-5=-1,纵坐标为:0,
    ∴点C的坐标为(-1,0).
    故答案为(-1,0).
    本题考查了勾股定理和坐标与图形性质的应用, 解此题的关键是求出的长, 注意: 在直角三角形中, 两直角边的平方和等于斜边的平方 .
    20、1
    【解析】
    根据点到x轴的距离是其纵坐标的绝对值解答即可.
    【详解】
    点P(﹣3,-1)到x轴的距离是其纵坐标的绝对值,所以点P(﹣3,-1)到x轴的距离为1.
    故答案为:1.
    本题考查了点的坐标的几何意义,明确点的坐标与其到x、y轴的距离的关系是解答本题的关键.
    21、100°
    【解析】
    如图所示:
    ∵四边形ABCD是平行四边形,
    ∴∠A=∠C,∠A+∠B=180°,
    ∵∠A+∠C=160°,
    ∴∠A=∠C=80°,
    ∴∠B的度数是:100°.
    故答案是:100°.
    22、1
    【解析】
    任何不为零的数的零次方都为1.
    【详解】
    任何不为零的数的零次方都等于1.
    =1
    本题考查零指数幂,熟练掌握计算法则是解题关键.
    23、(-1,3)
    【解析】
    利用一次函数与二元一次方程组的关系,可知两一次函数的交点坐标就是两函数解析式所组成的方程组的解,可得结果.
    【详解】
    解:∵ 方程组 的解是 ,
    ∴直线y=kx−b与直线y=−x+a的交点坐标为(−1,3),
    ∴ 直线y=-kx+b与直线y=x-a的交点坐标为(-1,3).
    故答案为:(-1,3)
    本题考查了一次函数与二元一次方程(组):两一次函数的交点坐标是两函数解析式所组成的方程组的解.
    二、解答题(本大题共3个小题,共30分)
    24、(1)四边形为菱形,理由见解析;(2)
    【解析】
    (1)根据折叠的性质可得EC=EG,GF=CF,,由GF∥EC,可得,进一步可得GE=GF,于是可得结论;
    (2)根据题意可先求得CE的长,过点E作EK⊥GF于点K,在Rt△GEK中,根据勾股定理可求得GK的长,于是FK可求,在Rt△EFK中,再利用勾股定理即可求得结果.
    【详解】
    (1)四边形为菱形,理由如下:
    证明:由折叠可得:,,,
    又∵,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴四边形为菱形.
    (2)如图,∵四边形为菱形,且其面积为,∴,
    ∴,
    过点E作EK⊥GF于点K,则EK=AB=4,
    在Rt△GEK中,由勾股定理得:,
    ∴,
    在Rt△EFK中,由勾股定理得:.
    本题考查了矩形的性质、折叠的性质、菱形的判定方法和勾股定理等知识,知识点虽多,但难度不大,熟练掌握折叠的性质、菱形的判定方法和勾股定理是解题的关键.
    25、(1)见解析;(2)见解析;(3)S菱形AEBD=1.
    【解析】
    (1)根据平行四边形的性质和全等三角形的判定证明即可;
    (2)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据BD=AD可得结论;
    (3)解直角三角形求出EF的长即可解决问题;
    【详解】
    解:(1)∵四边形ABCD是平行四边形,
    ∴AD∥CE,
    ∴∠DAF=∠EBF,
    ∵∠AFD=∠EFB,AF=FB,
    ∴△AFD≌△BFE(AAS);
    (2)∵△AFD≌△BFE,
    ∴AD=EB,∵AD∥EB,
    ∴四边形AEBD是平行四边形,
    ∵BD=AD,
    ∴四边形AEBD是菱形.
    (3)∵四边形ABCD是平行四边形,
    ∴CD=AB=,AB∥CD,
    ∴∠ABE=∠DCB,
    ∴tan∠ABE=tan∠DCB=3,
    ∵四边形AEBD是菱形,
    ∴AB⊥DE,AF=FB,EF=DF,
    ∴tan∠ABE==3,
    ∵BF=,
    ∴EF=,
    ∴DE=3,
    ∴S菱形AEBD=•AB•DE==1.
    本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
    26、 (1) 中位数为4个,众数为4个,平均数为5个(2) 中位数或众数,理由见解析(3) 25200人
    【解析】
    试题分析:(1)根据出现最多的是众数;把这组数据按大小关系排列,中间位置的是中位数(偶数个数据取中间两个数的平均值);平均数是总成绩除以总人数;
    (2)根据中位数或众数比较接近大部分学生成绩,故中位数或众数作为合格标准次数较为合适;
    (3)根据50人中,有42人符合标准,进而求出3万名该市九年级男生引体向上项目测试的合格人数即可.
    试题解析:(1)平均数为(1×1+1×2+6×3+18×4+10×5+6×6+2×7+2×8+1×9+1×10+2×11)÷50=5个;
    众数为4个,
    中位数为4个.
    (2)用中位数或众数(4个)作为合格标准次数较为合适,
    因为4个大部分同学都能达到.
    (3)(人).
    故估计该市九年级男生引体向上项目测试的合格人数是25200人.
    考点:众数;用样本估计总体;加权平均数;中位数;统计量的选择.
    题号





    总分
    得分
    型号
    22.5
    23
    23.5
    24
    24.5
    销量(双)
    5
    10
    15
    8
    3
    个数
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    人数
    1
    1
    6
    18
    10
    6
    2
    2
    1
    1
    2
    相关试卷

    2024年湖南省重点中学九上数学开学质量检测试题【含答案】: 这是一份2024年湖南省重点中学九上数学开学质量检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖南省娄底市名校数学九上开学质量检测试题【含答案】: 这是一份2024年湖南省娄底市名校数学九上开学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖南省汉寿县九上数学开学质量检测试题【含答案】: 这是一份2024年湖南省汉寿县九上数学开学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map