搜索
    上传资料 赚现金
    英语朗读宝

    2024年湖南邵阳县数学九年级第一学期开学考试模拟试题【含答案】

    2024年湖南邵阳县数学九年级第一学期开学考试模拟试题【含答案】第1页
    2024年湖南邵阳县数学九年级第一学期开学考试模拟试题【含答案】第2页
    2024年湖南邵阳县数学九年级第一学期开学考试模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年湖南邵阳县数学九年级第一学期开学考试模拟试题【含答案】

    展开

    这是一份2024年湖南邵阳县数学九年级第一学期开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列方程中是关于的一元二次方程的是( )
    A.B.C.D.
    2、(4分)下列式子是分式的是( )
    A.B.C.D.
    3、(4分)一组数据1,3,4,4,4,5,5,6的众数和方差分别是( )
    A.4,1B.4,2C.5,1D.5,2
    4、(4分)课堂上老师在黑板上布置了右框所示的题目,小聪马上发现了其中有一道题目错了,你知道是哪道题目吗?( )
    用平方差公式分解下列各式:
    (1)
    (2)
    (3)
    (4)
    A.第1道题B.第2道题C.第3道题D.第4道题
    5、(4分)如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是( )
    A.先把△ABC向左平移5个单位,再向下平移2个单位
    B.先把△ABC向右平移5个单位,再向下平移2个单位
    C.先把△ABC向左平移5个单位,再向上平移2个单位
    D.先把△ABC向右平移5个单位,再向上平移2个单位
    6、(4分)如图,将边长为的正方形绕点B逆时针旋转30°,那么图中点M的坐标为( )
    A.(,1)B.(1,)C.(,)D.(,)
    7、(4分)如图,在Rt△ABC中,AC=BC=2,将△ABC绕点A逆时针旋转60°,连接BD,则图中阴影部分的面积是( )
    A.2﹣2B.2C.﹣1D.4
    8、(4分)顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是 ( )
    A.矩形B.直角梯形C.菱形D.正方形
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)甲,乙,丙,丁四人参加射击测试,每人次射击的平均环数都为环,各自的方差见如下表格:
    则四个人中成绩最稳定的是______.
    10、(4分)如图,E是▱ABCD边BC上一点,连结AE,并延长AE与DC的延长线交于点F,若AB=AE,∠F=50°,则∠D= ____________°
    11、(4分)在一次函数y=kx+b(k≠0)中,函数y与自变量x的部分对应值如表:
    则m的值为_____.
    12、(4分)某农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种甜玉米各用10块试验田进行实验,得到这两个品种甜玉米每公顷产量的两组数据(如图所示).根据图6中的信息,可知在试验田中,____种甜玉米的产量比较稳定.
    13、(4分)如图,四边形ACDF是正方形,和都是直角,且点三点共线,,则阴影部分的面积是__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某中学八⑴班、⑵班各选5名同学参加“爱我中华”演讲比赛,其预赛成绩(满分100分)如图所示:
    (1)根据上图填写下表:
    (2)根据两班成绩的平均数和中位数,分析哪班成绩较好?
    (3)如果每班各选2名同学参加决赛,你认为哪个班实力更强些?请说明理由.
    15、(8分)甲乙两人做某种机械零件,已知甲每小时比乙多做5个,甲做300个所用的时间与乙做200个所用的时间相等,求甲乙两人每小时各做几个零件?
    16、(8分)先化简,再求值,从-1、1、2中选择一个你喜欢的且使原式有意义的的值代入求值.
    17、(10分)目前由重庆市教育委员会,渝北区人们政府主办的“阳光下成长”重庆市第八届中小学生艺术展演活动落下帷幕,重庆一中学生舞蹈团、管乐团、民乐团、声乐团、话剧团等五大艺术团均荣获艺术表演类节目一等奖,重庆一中获优秀组织奖,重庆一中老师李珊获先进个人奖,其中重庆一中舞蹈团将代表重庆市参加明年的全国集中展演比赛,若以下两个统计图统计了舞蹈组各代表队的得分情况:
    (1)m= ,在扇形统计图中分数为7的圆心角度数为 度.
    (2)补全条形统计图,各组得分的中位数是 分,众数是 分.
    (3)若舞蹈组获得一等奖的队伍有2组,已知主办方各组的奖项个数是按相同比例设置的,若参加该展演活动的总队伍数共有120组,那么该展演活动共产生了多少个一等奖?
    18、(10分)任丘市举办一场中学生乒乓球比赛,比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分费用与参加比赛的人数(x)人成正比.当x=20时,y=1600;当x=30时,y=1.
    (1)求y与x之间的函数关系式;
    (2)如果承办此次比赛的组委会共筹集;经费6350元,那么这次比赛最多可邀请多少名运动员参赛?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)使有意义的的取值范围是______.
    20、(4分)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为 (用n表示)
    21、(4分)如图,△ABC中,BD⊥CA,垂足为D,E是AB的中点,连接DE.若AD=3,BD=4,则DE的长等于_____
    22、(4分)如图将△ABC沿BC平移得△DCE,连AD,R是DE上的一点,且DR:RE=1:2,BR分别与AC,CD相交于点P,Q,则BP:PQ:QR=__.
    23、(4分)已知y轴上的点P到原点的距离为7,则点P的坐标为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平面直角坐标系xOy中,A(0,5),直线x=-5与x轴交于点D,直线y=-x-与x轴及直线x=-5分别交于点C,E.点B,E关于x轴对称,连接AB.
    (1)求点C,E的坐标及直线AB的解析式;
    (2)若S=S△CDE+S四边形ABDO,求S的值;
    (3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC的面积,如此不更快捷吗?”但大家经反复验算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.
    25、(10分)已知:如图,平面直角坐标系xOy中,B(0,1),OB=OC=OA,A、C分别在x轴的正负半轴上.过点C的直线绕点C旋转,交y轴于点D,交线段AB于点E.
    (1)求∠OAB的度数及直线AB的解析式;
    (2)若△OCD与△BDE的面积相等,求点D的坐标.
    26、(12分)如图,在四边形ABCD中,AC⊥CD,若AB=4,BC=5,AD=2,∠D=30°,求四边形ABCD的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    只含有一个未知数,并且未知数的项的最高次数是2,且等号两边都是整式的方程是一元二次方程,根据定义依次判断即可得到答案.
    【详解】
    A、等式左边不是整式,故不是一元二次方程;
    B、中a=0时不是一元二次方程,故不符合题意;
    C、整理后的方程是2x+5=0,不符合定义故不是一元二次方程;
    D、整理后的方程是,符合定义是一元二次方程,
    故选:D.
    此题考查一元二次方程的定义,正确理解此类方程的特点是解题的关键.
    2、B
    【解析】
    根据分母中含有字母的式子是分式,可得答案.
    【详解】
    解:是分式,
    故选:B.
    本题考查了分式的定义,分母中含有字母的式子是分式,否则是整式.
    3、B
    【解析】
    根据题目中的数据可以直接写出众数,求出相应的平均数和方差,从而可以解答本题.
    【详解】
    数据1,3,4,4,4,5,5,6的众数是4,

    则s2==2,
    故选B.
    本题考查方差和众数,解答本题的关键是明确众数的定义,会求一组数据的方差.
    4、C
    【解析】
    根据平方差公式的特点“符号相同数的平方减符号相反数的平方等于两数之和与两数之差的乘积”即可求解.
    【详解】
    解:由题意可知:,

    无法用平方差公式因式分解,

    故第3道题错误.
    故选:C.
    本题考查了用公式法进行因式分解,熟练掌握平方差公式及完全平方式是解决此类题的关键.
    5、A
    【解析】
    解:根据网格结构,观察点对应点A、D,点A向左平移5个单位,再向下平移2个单位即可到达点D的位置,所以,平移步骤是:先把△ABC向左平移5个单位,再向下平移2个单位.
    故选A.
    6、B
    【解析】
    由正方形和旋转的性质得出AB=BC'=,∠BAM=∠BC'M=90°,证出Rt△ABM≌Rt△C'BM,得出∠1=∠2,求出∠1=∠2=30°,在Rt△ABM中,求出AM的长即可.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴AB=BC'=,∠BAM=∠BC'M=90°,
    在Rt△ABM和Rt△C'BM中,,
    ∴Rt△ABM≌Rt△C'BM(HL),
    ∴∠1=∠2,
    ∵将边长为的正方形绕点B逆时针旋转30°,
    ∴∠CBC'=30°,
    ∴∠1=∠2=30°,
    在Rt△ABM中,AB=,∠1=30°,
    ∴AB=AM=,
    ∴AM=1,
    ∴点M的坐标为(1,);
    故选B.
    本题考查了正方形的性质、旋转的性质、坐标与图形性质、全等三角形的判定与性质、直角三角形的性质等知识;熟练掌握旋转的性质和正方形的性质,证明三角形全等是解决问题的关键.
    7、C
    【解析】
    由旋转的性质可得AB=AE,∠BAE=60°,AD=AC=2,BC=DE=2,可得△ABE是等边三角形,根据“SSS”可证△ADB≌△EDB,可得S△ADB=S△EDB,由S阴影=(S△ABE-S△ADE)可求阴影部分的面积.
    【详解】
    解:如图,连接BE,
    ∵在Rt△ABC中,AC=BC=2,
    ∴AB2=AC2+BC2=8
    ∵将△ABC绕点A逆时针旋转60°,
    ∴AB=AE,∠BAE=60°,AD=AC=2,BC=DE=2,
    ∴△ABE是等边三角形,
    ∴AB=BE,S△ABE=AB2=2,
    ∵AB=BE,AD=DE,DB=DB
    ∴△ADB≌△EDB(SSS)
    ∴S△ADB=S△EDB,
    ∴S阴影=(S△ABE﹣S△ADE)
    ∴S阴影=
    故选C.
    本题考查了旋转的性质,等腰直角三角形的性质,全等三角形判定和性质,熟练运用旋转的性质是本题的关键.
    8、A
    【解析】
    解:如图,
    AC⊥BD,E、F、G、H分别为各边的中点,连接点E、F、G、H.
    ∵E、F、G、H分别为各边的中点,
    ∴EF∥AC,GH∥AC,EH∥BD,FG∥BD(三角形的中位线平行于第三边),
    ∴四边形EFGH是平行四边形(两组对边分别平行的四边形是平行四边形),
    ∵AC⊥BD,EF∥AC,EH∥BD,
    ∴∠EMO=∠ENO=90°,
    ∴四边形EMON是矩形(有三个角是直角的四边形是矩形),
    ∴∠MEN=90°,
    ∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).
    故选:A.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、甲
    【解析】
    根据方差的意义:方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定可得答案.
    【详解】
    解:,
    四个人中成绩最稳定的是甲.
    故答案为:甲.
    此题主要考查了方差,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    10、1
    【解析】
    利用平行四边形的性质以及平行线的性质得出∠F=∠BAE=50°,进而由等腰三角形的性质和三角形内角和定理求得∠B=∠AEB=1°,利用平行四边形对角相等得出即可.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AB∥DC,
    ∴∠F=∠BAE=50°,.
    ∵AB=AE,
    ∴∠B=∠AEB=1°,
    ∴∠D=∠B=1°.
    故答案是:1.
    此题主要考查了平行四边形的性质,熟练应用平行四边形的性质得出是解题关键.平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.
    11、-2
    【解析】
    把两组坐标代入解析式,即可求解.
    【详解】
    解:将(﹣1,7)、(0,1)代入y=kx+b,
    得:,解得:,
    ∴一次函数的解析式为y=﹣5x+1.
    当x=1时,m=﹣5×1+1=﹣2.
    故答案为:﹣2.
    此题主要考查一次函数的解析式,解题的关键是熟知待定系数法确定函数关系式.
    12、乙
    【解析】
    试题分析:从图中看到,乙的波动比甲的波动小,故乙的产量稳定.故填乙.
    考点:方差;折线统计图.
    点评:本题要求了解方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    13、8
    【解析】
    【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.
    【详解】∵四边形ACDF是正方形,
    ∴AC=FA,∠CAF=90°,
    ∴∠CAE+∠FAB=90°,
    ∵∠CEA=90°,∴∠CAE+∠ACE=90°,
    ∴∠ACE=∠FAB,
    又∵∠AEC=∠FBA=90°,
    ∴△AEC≌△FBA,
    ∴CE=AB=4,
    ∴S阴影==8,
    故答案为8.
    【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)85,1;(2)八⑴班的成绩较好;(3)八⑵班实力更强些,理由见解析
    【解析】
    (1)根据中位数和众数的定义填空.
    (2)根据平均数和中位数比较两个班的成绩.
    (3)比较每班前两名选手的成绩即可.
    【详解】
    解:(1)由条形图数据可知:中位数填85,众数填1.
    故答案为:85,1;
    (2)因两班平均数相同,
    但八(1)班的中位数高,
    所以八(1)班的成绩较好.
    (3)如果每班各选2名选手参加决赛,我认为八(2)班实力更强些.因为,虽然两班的平均数相同,但在前两名的高分区中八(2)班的成绩为1分和1分,而八(1)班的成绩为1分和85分.
    本题考查了运用平均数,中位数与众数解决实际问题的能力.平均数是指在一组数据中所有数据之和再除以数据的个数.
    15、甲每小时做15个零件,乙每小时做10个零件.
    【解析】
    设甲每小时做x个零件,则乙每小时做x-5个零件,根据“甲做300个所用的时间与乙做200个所用的时间相等”列出方程并解答.
    【详解】
    设甲每小时做个零件
    则乙每小时做个零件
    根据题意得
    解得:
    经检验,是分式方程的解

    答:甲每小时做15个零件,乙每小时做10个零件
    此题考查分式方程的应用,解题关键在于列出方程
    16、4
    【解析】
    根据分式的运算法则即可求出答案.
    【详解】
    原式=
    =x+2,
    由分式有意义的条件可知:x=2,
    ∴原式=4,
    本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
    17、(1)25,54;(2)如图所示见解析;6.5,6;(3)该展演活动共产生了12个一等奖.
    【解析】
    (1)根据条形统计图和扇形统计图中的数据,即可得到总的组数,进而得出各分数对应的组数以及圆心角度数;(2)根据中位数以及众数的定义进行判断,即可得到中位数以及众数的值;(3)依据舞蹈组获得一等奖的队伍的比例,即可估计该展演活动共产生一等奖的组数.
    【详解】
    (1)10÷50%=20(组),20﹣2﹣3﹣10=5(组),
    m%=×100%=25%,
    ×360°=54°,
    故答案为:25,54;
    (2)8分这一组的组数为5,如图所示:
    各组得分的中位数是(7+6)=6.5,
    分数为6分的组数最多,故众数为6;
    故答案为:6.5,6;
    (3)由题可得,×120=12(组),
    ∴该展演活动共产生了12个一等奖.
    本题主要考查了条形统计图以及扇形统计图的应用,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,从条形图可以很容易看出数据的大小,便于比较.
    18、 (1) 函数的解析式是:y=40x+800;(2) 这次比赛最多可邀请138名运动员.
    【解析】
    (1)根据叙述即可得到y与x之间的关系是一次函数关系,可以利用待定系数法求解;(2)在(1)求得的函数解析式中,令y=6350,即可求得x的值.
    【详解】
    解:(1)设y=kx+b,根据题意得:
    解得:
    则函数的解析式是:y=40x+800
    (2)在y=40x+800中y=6350
    解得:x=138
    则这次比赛最多可邀请138名运动员.
    本题考查待定系数法求一次函数解析式,解题关键是灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据二次根式的被开方数是非负数和分式的分母不等于零进行解答.
    【详解】
    解:依题意得:且x-1≠0,
    解得.
    故答案为:.
    本题考查了二次根式的意义和性质.概念:式子叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
    20、(2n,1)
    【解析】
    试题分析:根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可:
    由图可知,n=1时,4×1+1=5,点A5(2,1),
    n=2时,4×2+1=9,点A9(4,1),
    n=3时,4×3+1=13,点A13(6,1),
    ∴点A4n+1(2n,1).
    21、2.1
    【解析】
    根据勾股定理求出AB,根据直角三角形斜边上中线性质得出DE=AB,代入求出即可.
    【详解】
    .解:∵BD⊥CA,
    ∴∠ADB=90°,
    在Rt△ADB中,由勾股定理得:AB= ==1,
    ∵E是AB的中点,∠ADB=90°,
    ∴DE=AB=2.1,
    故答案为:2.1.
    本题考查了勾股定理和直角三角形斜边上中线的性质,能求出AB的长和得出DE=AB是解此题的关键.
    22、2:1:1
    【解析】
    根据平移的性质得到AC∥DE,BC=CE,得到△BPC∽△BRE,根据相似三角形的性质得到PC=DR,根据△PQC∽△RQD,得到PQ=QR,即可求解.
    【详解】
    由平移的性质可知,AC∥DE,BC=CE,
    ∴△BPC∽△BRE,
    ∴,
    ∴PC=RE,BP=PR,
    ∵DR:RE=1:2,
    ∴PC=DR,
    ∵AC∥DE,
    ∴△PQC∽△RQD,
    ∴=1,
    ∴PQ=QR,
    ∴BP:PQ:QR=2:1:1,
    故答案为2:1:1.
    本题考查了相似三角形的判定和性质,平移的性质,掌握相似三角形的判定定理和性质定理是解题的关键.
    23、(0,7)或(0,-7)
    【解析】
    点P在y轴上,分两种情况:正方向和负方向,即可得出点P的坐标为(0,7)或(0,-7).
    【详解】
    ∵点P在y轴上,分两种情况:正方向和负方向,点P到原点的距离为7
    ∴点P的坐标为(0,7)或(0,-7).
    此题主要考查平面直角坐标系中点的坐标,只告知点到原点的距离,要分两种情况,不要遗漏.
    二、解答题(本大题共3个小题,共30分)
    24、(1)C(-13,0),E(-5,-3),;(2)32;(3)见解析.
    【解析】
    (1)利用坐标轴上点的特点确定出点C的坐标,再利用直线的交点坐标的确定方法求出点E坐标,进而得到点B坐标,最后用待定系数法求出直线AB解析式;
    (2)直接利用直角三角形的面积计算方法和直角梯形的面积的计算即可得出结论,
    (3)先求出直线AB与x轴的交点坐标,判断出点C不在直线AB上,即可.
    【详解】
    (1)在直线中,令y=0,则有0=,
    ∴x=﹣13,
    ∴C(﹣13,0),
    令x=﹣5,代入,解得y=﹣3,
    ∴E(﹣5,﹣3),
    ∵点B,E关于x轴对称,
    ∴B(﹣5,3),
    ∵A(0,5),
    ∴设直线AB的解析式为y=kx+5,
    ∴﹣5k+5=3,
    ∴k=,
    ∴直线AB的解析式为;
    (2)由(1)知E(﹣5,﹣3),
    ∴DE=3,
    ∵C(﹣13,0),
    ∴CD=﹣5﹣(﹣13)=8,
    ∴S△CDE=CD×DE=12,
    由题意知,OA=5,OD=5,BD=3,
    ∴S四边形ABDO=(BD+OA)×OD=20,
    ∴S=S△CDE+S四边形ABDO=12+20=32;
    (3)由(2)知,S=32,
    在△AOC中,OA=5,OC=13,
    ∴S△AOC=OA×OC==32.5,
    ∴S≠S△AOC,
    理由:由(1)知,直线AB的解析式为,令y=0,则0=,
    ∴x=﹣≠﹣13,
    ∴点C不在直线AB上,
    即:点A,B,C不在同一条直线上,
    ∴S△AOC≠S.
    此题是一次函数综合题,主要考查了坐标轴上点的特点,对称的性质,待定系数法,三角形,直角梯形的面积的计算,解(1)的关键是确定出点C,E的坐标,解(2)的关键是特殊几何图形的面积的计算,解(3)的关键是确定出直线AB与x轴的交点坐标,是一道常规题.
    25、(1)45°,y=﹣x+1;(2)(0,).
    【解析】
    (1)根据A、B的坐标和三角形的内角和定理求出∠OAB的度数即可;设直线AB的解析式为y=kx+b,把A、B的坐标代入得出方程组,求出方程组的解即可;
    (2)推出三角形AOB和三角形ACE的面积相等,根据面积公式求出E的纵坐标,代入直线AB的解析式,求出E的横坐标,设直线CE的解析式是:y=mx+n,利用待定系数法求出直线EC的解析式,进而即可求得点D的坐标.
    【详解】
    解:(1)∵OB=OC=OA,∠AOB=90°,
    ∴∠OAB=45°;
    ∵B(0,1),
    ∴A(1,0),
    设直线AB的解析式为y=kx+b.

    解得,

    ∴直线AB的解析式为y=﹣x+1;
    (2)∵S△COD=S△BDE,
    ∴S△COD+S四边形AODE=S△BDE+S四边形AODE,
    即S△ACE=S△AOB,
    ∵点E在线段AB上,
    ∴点E在第一象限,且yE>0,



    把y代入直线AB的解析式得:

    设直线CE的解析式是:y=mx+n,
    ∵ 代入得:
    解得:
    ∴直线CE的解析式为
    令x=0,则
    ∴D的坐标为
    本题考查了等腰三角形的性质,用待定系数法求一次函数的解析式,三角形的面积等知识点,综合运用这些性质进行推理和计算是解此题的关键,此题题型较好,综合性比较强,但难度适中,通过做此题培养了学生分析问题和解决问题的能力.
    26、10+
    【解析】
    先运用勾股定理求出AC的长度,从而利用勾股定理的逆定理判断出△ABC是直角三角形,然后可将S四边形ABCD=S△ABC+S△ACD进行求解.
    【详解】
    解:在△ACD中,AC⊥CD,AD=2,∠D=30°,
    ∴AC=,
    ∴CD=,
    在△ABC中,AB2+BC2=42+52=41,AC2=41,
    ∴AB2+BC2=AC2,
    ∴△ABC是直角三角形,且∠ABC=90°,
    ∴S四边形ABCD=S△ABC+S△ACD=AB·BC+AC·CD=10+.
    本题考查了勾股定理及其逆定理,解答本题的关键是判断出△ABC是直角三角形.
    题号





    总分
    得分




    方差
    x

    ﹣2
    ﹣1
    0
    1
    2

    y

    12
    7
    2
    m
    ﹣8

    平均数
    中位数
    众数
    八(1)班
    85
    85
    八(2)班
    85
    80

    相关试卷

    2024年湖南邵阳县九上数学开学学业水平测试模拟试题【含答案】:

    这是一份2024年湖南邵阳县九上数学开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    备考练习湖南省邵阳县中考数学模拟考试 A卷(含答案解析):

    这是一份备考练习湖南省邵阳县中考数学模拟考试 A卷(含答案解析),共30页。试卷主要包含了利用如图①所示的长为a,如图,点B,代数式的意义是等内容,欢迎下载使用。

    【真题汇编】湖南省邵阳县中考数学模拟考试 A卷(含答案及解析):

    这是一份【真题汇编】湖南省邵阳县中考数学模拟考试 A卷(含答案及解析),共30页。试卷主要包含了抛物线的顶点为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map