2024年黑龙江省大庆市林甸县九上数学开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)用配方法解方程时,配方变形结果正确的是( )
A.B.C.D.
2、(4分)如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件正确的是( )
A.AB=ADB.AC=BDC.∠ABC=90°D.∠ABC=∠ADC
3、(4分)用配方法解一元二次方程,此方程可化为的正确形式是( )
A.B.C.D.
4、(4分)代数式在实数范围内有意义,则的取值范围是( )
A.B.C.D.
5、(4分)某校九年级(1)班全体学生2018年初中毕业体育考试的成绩统计如表:
根据如表的信息判断,下列结论中错误的是()
A.该班一共有40名同学
B.该班学生这次考试成绩的众数是45分
C.该班学生这次考试成绩的中位数是44分
D.该班学生这次考试最高成绩是50分
6、(4分)下列数据中不能作为直角三角形的三边长的是( )
A.1,,2B.7,24,25C..D.1,,
7、(4分)不等式>﹣1的正整数解的个数是( )
A.1个B.2个C.3个D.4个
8、(4分)在等腰三角形中,,则的周长为( )
A.B.C.或D.或
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若关于x的一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.
10、(4分)如图,直线y1=x+1和直线y1=0.5x+1.5相交于点(1,3),则当x=_____时,y1=y1;当x______时,y1>y1.
11、(4分)在△ABC中,AB=8,BC=2 ,AC=6,D是AB的中点,则CD=_____.
12、(4分)如图,在△ABC中,AB=AC=5,BC=8,点D是边BC上(不与B,C重合)一动点,∠ADE=∠B=a,DE交AC于点E,下列结论:①AD2=AE.AB;②1.8≤AE<5;⑤当AD=时,△ABD≌△DCE;④△DCE为直角三角形,BD为4或6.1.其中正确的结论是_____.(把你认为正确结论序号都填上)
13、(4分)已知﹣=16,+=8,则﹣=________.
三、解答题(本大题共5个小题,共48分)
14、(12分)世界卫生组织预计:到2025年,全世界将会有一半人面临用水危机,为了倡导“节约用水,从我做起”,某县政府决定对县直属机关300户家庭一年的月平均用水量进行调查,调查小组抽查了部分家庭月平均用水量(单位:吨),绘制条形图和扇形图如图所示.
(1)请将条形统计图补充完整;
(2)这些家庭月平均用水量数据的平均数是_______,众数是______,中位数是_______;
(3)根据样本数据,估计该县直属机关300户家庭的月平均用水量不超过12吨的约有多少户.
15、(8分)解方程:
16、(8分)如图,在中,点分别在边上,已知,.求证:四边形是平行四边形.
17、(10分)计算
(1)﹣+;
(2)×﹣( +)(﹣).
18、(10分)已知:如图,E、F是▱ABCD的对角线AC上的两点,AF=CE.
求证:(1)△ABE≌△CDF;
(2)ED∥BF.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为_____.
20、(4分)如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为_____.
21、(4分)如图,在正方形ABCD中,P为对角线BD上一点,过P作PE⊥BC于E,PF⊥CD于F,若PE=1,PF=3,则AP=________ .
22、(4分)若关于x的分式方程有增根,则m的值为_______.
23、(4分)《九章算术》是我国古代重要的数学著作之一,在“勾股”中记载了一道“折竹抵地”问题:“今有竹高一丈,未折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程求出AC的长为____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在中,为边的中点,过点作,与的延长线相交于点,为延长上的任一点,联结、.
(1)求证:四边形是平行四边形;
(2)当为边的中点,且时,求证:四边形为矩形.
25、(10分)如图,矩形ABCD中,点E,F分别在边AB与CD上,点G、H在对角线AC上,AG=CH,BE=DF.
(1)求证:四边形EGFH是平行四边形;
(2)若EG=EH,AB=8,BC=1.求AE的长.
26、(12分)为调查某校初二学生一天零花钱的情况,随机调查了初二级部分学生的零钱金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:
(1)本次接受随机抽样调查的学生人数为_____,图①中的值是_____;
(2)求本次调查获取的样本数据的平均数;
(3)根据样本数据,估计该年级300名学生每天零花钱不多于10元的学生人数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据配方法的步骤先把常数项移到等号的右边,再在等式两边同时加上一次项系数一半的平方,配成完全平方的形式,从而得出答案.
【详解】
∵
∴x2+6x=1,
∴x2+6x+9=1+9,
∴(x+3)2=10;
故选:C.
本题考查了配方法解一元二次方程,掌握配方法的步骤是解题的关键;配方法的一般步骤是:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
2、A
【解析】
根据菱形的定义和判定定理即可作出判断.
【详解】
A、根据菱形的定义可得,当AB=AD时平行四边形ABCD是菱形,故A选项符合题意;
B、根据对角线相等的平行四边形是矩形,可知AC=BD时,平行四边形ABCD是矩形,故B选项不符合题意;
C、有一个角是直角的平行四边形是矩形,可知当∠ABC=90° 时,平行四边形ABCD是矩形,故C选项不符合题意;
D、由平行四边形的性质可知∠ABC=∠ADC,∠ABC=∠ADC这是一个已知条件,因此不能判定平行四边形ABCD是菱形,故D选项不符合题意,
故选A.
本题考查了平行四边形的性质,菱形的判定、矩形的判定等,熟练掌握相关的判定方法是解题的关键.
3、D
【解析】
方程常数项移到右边,两边加上9变形即可得到结果.
【详解】
解:方程移项得:x2-6x=-1,
配方得:x2-6x+9=8,即(x-3)2=8,
故选D.
本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.
4、C
【解析】
直接根据二次根式被开方数为非负数解题即可.
【详解】
由题意得:,∴.
故选:C.
本题主要考查了二次根式的性质,熟练掌握相关性质是解题关键.
5、C
【解析】
根据总数,众数,中位数的定义即可一一判断;
【详解】
该班一共有:2+5+6+6+8+7+6=40(人),众数是45分,最高成绩为50分,中位数为45分,
故A、B、D正确,C错误,
故选:C.
此题考查总数,众数,中位数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.
6、C
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.
【详解】
解:A.,符合勾股定理的逆定理,故不符合题意;
B. 72+242=252,符合勾股定理的逆定理,故不符合题意;
C.,不符合勾股定理的逆定理,故符合题意;
D.,符合勾股定理的逆定理,故不符合题意.
故选:C.
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
7、D
【解析】
,去分母得3(x+1)>2(2x+2)-6,去括号得3x+3>4x+4-6,移项,合并同类项得-x>-5,系数化为1得x<5,所以满足不等式的正整数的个数有4个,故选D.
8、A
【解析】
等腰△ABC的两边长分别为4和2,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.
【详解】
①当腰是AB,则周长为4+4+2=10;
②当腰是BC,则三边为4,2,2,此时不能构成三角形,舍去.
故选A.
此题考查等腰三角形的性质,三角形三边关系,解题关键在于分情况讨论
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据题意可得一元二次方程根的判别式为0,列出含k的等式,再将所求代数进行变形后整体代入求值即可.
【详解】
解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,
∴ ,
整理得, ,
∴
当时,
故答案为:.
本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.
10、1
【解析】
直线y1=x+1和直线y1=0.5x+1.5交点的横坐标的值即为y1=y1时x的取值;直线y1=x+1的图象落在直线y1=0.5x+1.5上方的部分对应的自变量的取值范围即为时x的取值.
【详解】
解:∵直线和直线相交于点,
∴当时,;
由图象可知:当时,.
故答案为:1;.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一次函数与一元一次方程的关系.
11、4
【解析】
先运用勾股定理逆定理得出△ABC是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可得出CD的长.
【详解】
解:在△ABC中,AB=8,BC=2,AC=6,
82=64=(2)2+62,
所以AB2=BC2+AC2,
所以△ABC是直角三角形,
∵D是AB的中点,
∴CD=AB=4,
故答案为:4
本题考查勾股定理逆定理,解题关键根据勾股定理逆定理及直角三角形斜边上的中线等于斜边的一半的性质解答.
12、①②④.
【解析】
①易证△ABD∽△ADF,结论正确;
②由①结论可得:AE=,再确定AD的范围为:3≤AD<5,即可证明结论正确;
③分两种情况:当BD<4时,可证明结论正确,当BD>4时,结论不成立;故③错误;
④△DCE为直角三角形,可分两种情况:∠CDE=90°或∠CED=90°,分别讨论即可.
【详解】
解:如图,在线段DE上取点F,使AF=AE,连接AF,
则∠AFE=∠AEF,
∵AB=AC,
∴∠B=∠C,
∵∠ADE=∠B=a,
∴∠C=∠ADE=a,
∵∠AFE=∠DAF+∠ADE,∠AEF=∠C+∠CDE,
∴∠DAF=∠CDE,
∵∠ADE+∠CDE=∠B+∠BAD,
∴∠CDE=∠BAD,
∴∠DAF=∠BAD,
∴△ABD∽△ADF
∴,即AD2=AB•AF
∴AD2=AB•AE,
故①正确;
由①可知:,
当AD⊥BC时,由勾股定理可得:
,
∴,
∴,即,故②正确;
如图2,作AH⊥BC于H,
∵AB=AC=5,
∴BH=CH=BC=4,
∴,
∵AD=AD′=,
∴DH=D′H=,
∴BD=3或BD′=5,CD=5或CD′=3,
∵∠B=∠C
∴△ABD≌△DCE(SAS),△ABD′与△D′CE不是全等形
故③不正确;
如图3,AD⊥BC,DE⊥AC,
∴∠ADE+∠DAE=∠C+∠DAE=90°,
∴∠ADE=∠C=∠B,
∴BD=4;
如图4,DE⊥BC于D,AH⊥BC于H,
∵∠ADE=∠C,
∴∠ADH=∠CAH,
∴△ADH∽△CAH,
∴,即,
∴DH=,
∴BD=BH+DH=4+==6.1,
故④正确;
综上所述,正确的结论为:①②④;
故答案为:①②④.
本题属于填空题压轴题,考查了直角三角形性质,勾股定理,全等三角形判定和性质,相似三角形判定和性质,动点问题和分类讨论思想等;解题时要对所有结论逐一进行分析判断,特别要注意分类讨论.
13、2
【解析】
根据平方差公式即可得出答案.
【详解】
∵,
∴
故答案为2.
本题考查的是平方差公式,熟知平方差公式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)补图见解析;(2)11.6,11,11;(3)210户.
【解析】
(1)利用总户数乘相应的百分比,即可得出答案,再补全即可;
(2)利用众数,中位数以及平均数的公式进行计算即可;
(3)根据样本中不超过12吨的户数,再估计300户家庭中月平均用水量不超过12吨的户数即可.
【详解】
解:(1)由图知:被调查的总户数=10÷20%=50(户),
则月平均用水量是11吨的用户数=50×40%=20(户)
补全条形图如图所示:
(2) 这50 个样本数据的平均数是 11.6,众数是11,中位数是11,
故答案为;11.6,11,11;
(3)样本中不超过12吨的有10+20+5=35(户),
则该县直属机关300户家庭的月平均用水量不超过12吨的约有=210(户).
本题考查了读统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了众数、中位数的统计意义.
15、(1);(2),
【解析】
(1)直接用因式分解法解方程即可;
(2)利用公式法解方程.
【详解】
解:(1)原方程分解因式得:
∴方程的解为:;
,
本题考查的知识点是解一元二次方程,掌握解一元二次方程的不同方法的步骤是解此题的关键.
16、见解析
【解析】
根据题意证明EF∥AB,即可解答
【详解】
证明:∵DE∥BC,
∴∠ADE=∠B.
∵∠ADE=∠EFC,
∴∠EFC=∠B.
∴EF∥AB,
∴四边形BDEF是平行四边形.
此题考查平行四边形的判定,平行线的性质,解题关键在于证明EF∥AB
17、(1) (2)1
【解析】
试题分析:(1)先把二次根式化简再合并即可;
(2)进行二次根式的乘法运算即可.
试题解析:(1)原式=
= +3;
(2)原式=3-5+3
=1.
18、(1)见解析;(2)见解析
【解析】
(1)根据已知条件得到AE=CF,根据平行四边形的性质得到∠DCF=∠BAE,根据全等三角形的判定定理即可得到结论;
(2)根据全等三角形的性质得到BE=DF,∠AEB=∠CFD,根据平行四边形的判定和性质即可得到结论.
【详解】
证明:(1)∵AF=CE,
∴AF﹣EF=CE﹣EF,
即AE=CF,
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠DCF=∠BAE,
在△ABE与△CDF中,
∵,
,
,
∴△ABE≌△CDF(SAS);
(2)∵△ABE≌△CDF,
∴BE=DF,∠AEB=∠CFD,
∴∠BEF=∠DFE,
∴BE∥DF,
∴四边形DEBF是平行四边形,
∴ED∥BF.
本题考查了平行四边形的判定和性质,全等三角形的判定和性质,正确的识别图形是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4cm
【解析】
根据平行四边形的性质可知AO=OC,OD=OB,据此求出AO、DO的长,利用勾股定理求出AD的长即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴AO=OC,OD=OB,
又∵AC=10cm,BD=6cm,
∴AO=5cm,DO=3cm,
本题考查了平行四边形的性质、勾股定理,找到四边形中的三角形是解题的关键.
20、1
【解析】
根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.
解答:解:过点P作MN⊥AD,
∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,
∴AP⊥BP,PN⊥BC,
∴PM=PE=2,PE=PN=2,
∴MN=2+2=1.
故答案为1.
21、
【解析】
延长FP、EP交AB、AD于M、N,由正方形的性质,得到∠PBE=∠PDF=45°,再由等腰三角形的性质及正方形的性质得到BE=PE=PM=1,PN=FD=FP=3,由勾股定理即可得出结论.
【详解】
解:如图,延长FP、EP交AB、AD于M、N.
∵四边形ABCD为正方形,∴∠PBE=∠PDF=45°,∴BE=PE=PM=1,PN=FD=FP=3,则AP= == =.
本题考查了正方形的性质.求出PM,PN的长是解答本题的关键.
22、1
【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母,得到,然后代入化为整式方程的方程算出m的值.
【详解】
解:方程两边都乘,得
∵原方程有增根,
∴最简公分母,
解得,
当时,
故m的值是1,
故答案为1
本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
23、.
【解析】
设AC=x,可知AB=10﹣x,再根据勾股定理即可得出结论.
【详解】
解:设AC=x.
∵AC+AB=10,
∴AB=10﹣x.
∵在Rt△ABC中,∠ACB=90°,
∴AC1+BC1=AB1,即x1+31=(10﹣x)1.
解得:x.
故答案为:
本题考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析.
【解析】
(1)首先利用平行线的性质和中点证明,则有,然后利用一组对边平行且相等即可证明四边形是平行四边形;
(2)首先利用平行四边形的性质得出,进而可得出,然后利用等腰三角形三线合一得出,则可证明平行四边形是矩形.
【详解】
(1),
,.
是的中点,
.
在与中,
,
.
又
四边形是平行四边形.
(2)四边形是平行四边形
.
,
又是中点,
.
即.
又四边形是平行四边形.
四边形是矩形.
本题主要考查平行四边形的判定与性质,矩形的判定,掌握全等三角形的判定及性质,平行线的性质,等腰三角形的性质是解题的关键.
25、(1)见解析;(2)AE=2.
【解析】
(1)依据矩形的性质,即可得出△AEG≌△CFH,进而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四边形EGFH是平行四边形;
(2)由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF=AE,设AE=x,则FC=AF=x,DF=8-x,依据Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.
【详解】
(1)∵矩形ABCD中,AB∥CD,
∴∠FCH=∠EAG,
又∵CD=AB,BE=DF,
∴CF=AE,
又∵CH=AG,
∴△AEG≌△CFH,
∴GE=FH,∠CHF=∠AGE,
∴∠FHG=∠EGH,
∴FH∥GE,
∴四边形EGFH是平行四边形;
(2)如图,连接EF,AF,
∵EG=EH,四边形EGFH是平行四边形,
∴四边形GFHE为菱形,
∴EF垂直平分GH,
又∵AG=CH,
∴EF垂直平分AC,
∴AF=CF=AE,
设AE=x,则FC=AF=x,DF=8-x,
在Rt△ADF中,AD2+DF2=AF2,
∴12+(8-x)2=x2,
解得x=2,
∴AE=2.
此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键.
26、(1)50,32;(2)16;(3)1.
【解析】
(1)用零花钱为5元频数除以本组所占百分比即可求出抽样调查人数,求出零花钱为10元人数所占比例即可求出m;
(2)根据加权平均数计算公式即可解决问题;
(3)用300乘以样本中零花钱不多于10元的学生所占百分比即可求解.
【详解】
解:(1)4÷8%=50(人),
,
∴m=32;
(2)(元);
(3)(人).
本题考查了扇形统计图,条形统计图,加权平均数,用样本估计总体等知识,熟记相关知识点是解题关键.
题号
一
二
三
四
五
总分
得分
成绩(分)
35
39
42
44
45
48
50
人数(人)
2
5
6
6
8
7
6
2024年黑龙江省大庆市林甸县九上数学开学监测模拟试题【含答案】: 这是一份2024年黑龙江省大庆市林甸县九上数学开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年黑龙江省大庆市杜尔伯特县数学九上开学经典模拟试题【含答案】: 这是一份2024年黑龙江省大庆市杜尔伯特县数学九上开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年黑龙江省大庆市大庆中学九上数学开学达标检测模拟试题【含答案】: 这是一份2024年黑龙江省大庆市大庆中学九上数学开学达标检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。