2024年河北省邢台市第二十五中学数学九年级第一学期开学监测模拟试题【含答案】
展开这是一份2024年河北省邢台市第二十五中学数学九年级第一学期开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在同一直线上,甲、乙两人分别从A,B两点同时向右出发,甲、乙均为匀速,图2表示两人之间的距离y(m)与所经过的时间t(s)之间的函数关系图象,若乙的速度为1.5m/s,则经过30s,甲自A点移动了( )
A.45mB.7.2mC.52.2mD.57m
2、(4分)在如图所示的计算程序中,y与x之间的函数关系式所对应的图象是( )
A.B.
C.D.
3、(4分)如图是根据某班 40 名同学一周的体育锻炼情况绘制的统计图,该班 40 名同学一周参加体育锻炼时间的中位数,众数分别是( )
A.10.5,16B.8.5,16C.8.5,8D.9,8
4、(4分)对角线相等且互相平分的四边形是( )
A.一般四边形B.平行四边形C.矩形D.菱形
5、(4分)下列运算正确的是( )
A.B.=4C.=3D.
6、(4分)关于x的一元二次方程kx2-3x+1=0有两个不相等的实数根,则k的取值范围( )
A.B.且k≠0C.D.且k≠0
7、(4分)直线y=kx+b不经过第三象限,则k、b应满足( )
A.k>0,b<0 B.k<0,b>0 C.k<0 b<0 D.k<0,b≥0
8、(4分)如图,将平行四边形ABCD绕点A逆时针旋转40°,得到平行四边形AB′C′D′,若点B′恰好落在BC边上,则∠DC′B′的度数为( )
A.60°B.65°C.70°D.75°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为________.
10、(4分)据统计,2008年上海市常住人口数量约为18884600人,用科学计数法表示上海市常住人口数是___________.(保留4个有效数字)
11、(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A5的坐标是___.
12、(4分)如图,已知矩形ABCD,AB在y轴上,AB=2,BC=3,点A的坐标为(0,1),在AD边上有一点E(2,1),过点E的直线与BC交于点F.若EF平分矩形ABCD的面积,则直线EF的解析式为________.
13、(4分)如图,直线与轴、轴分别交于两点,把绕点顺时针旋转后得到,则点的坐标为____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在边长为1个单位的长度的正方形网格中有一个格点(顶点都在格点上).
(1)请用无刻度直尺画出另一个格点,使与的面积相等;
(2)求出的面积.
15、(8分)如图,直线与轴交于点,与轴交于点,与直线交于点,点的横坐标为3.
(1)直接写出值________;
(2)当取何值时,?
(3)在轴上有一点,过点作轴的垂线,与直线交于点,与直线交于点,若,求的值.
16、(8分)如图,已知E、F是平行四边形ABCD对角线AC上的两点,并且AE=CF.请说明四边形BFDE是平行四边形.
17、(10分)某校为了了解学生在校吃午餐所需时间的情况,抽查了20名同学在校吃午餐所花的时间,获得如下数据(单位:min):
10,12,15,10,16,18,19,18,20,38,
22,25,20,18,18,20,15,16,21,16.
(1)若将这些数据分为6组,请列出频数表,画出频数直方图;
(2)根据频数直方图,你认为校方安排学生吃午餐时间多长为宜?请说明理由.
18、(10分)某商店购进一批小家电,单价40元,第一周以每个52元的价格售出180个,商店为了适当增加销量,第二周决定降价销售。根据市场调研,售价每降1元,一周可比原来多售出10个,已知商店两周共获利4160元,问第二周每个小家电的售价降了多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果一个多边形的每个外角都等于,那么这个多边形的内角和是______度.
20、(4分)将两块相同的含有30°角的三角尺按如图所示的方式摆放在一起,则四边形ABCD为平行四边形,请你写出判断的依据_____.
21、(4分)已知函数y=3x的图象经过点A(-1,y1),点B(-2,y2),则y1____y2(填“>”或“<”或“=”).
22、(4分)在平面直角坐标系中,中,点,若随变化的一族平行直线与(包括边界)相交,则的取值范围是______.
23、(4分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是________ .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,AB=5,AD=3,E是AB上的一点,F是AD上的一点,连接BO和FO.
(1)当点E为AB中点时,求EO的长度;
(2)求线段AO的取值范围;
(3)当EO⊥FO时,连接EF.求证:BE+DF>EF.
25、(10分)某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个,且制成一个甲种边框比制成一个乙种边框需要多用的材料.
(1)求制作每个甲种边框、乙种边框各用多少米材料?
(2)如果制作甲、乙两种边框的材料共640米,要求制作乙种边框的数量不少于甲种边框数量的2倍,求应最多安排制作甲种边框多少个(不计材料损耗)?
26、(12分)观察下列等式:
,
将以上二个等式两边分别相加得:
用你发现的规律解答下列总是:
(1)直接写出下列各式的计算结果:
①_______________________
②______________________
(2)仿照题中的计算形式,猜想并写出:___________________________
(3)解方程:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
设甲与乙的距离为s,根据图像可求出解析式,即可进行求解.
【详解】
解:设甲与乙的距离为s,则关于t的函数为s=kt+b(k≠0),
将(0,12)(50,0)代入
得,
解得k=﹣0.24,b=12,
函数表达式,s=﹣0.24t+12(0≤t≤50),
则30秒后,s=4.8
设甲自A点移动的距离为y,则y+s=12+1.5×30
解得:y=52.2
∴甲自A点移动52.2m.
故选:C.
此题主要考查一次函数的图像,解题的关键是熟知一次函数解析式的求解.
2、A
【解析】
根据程序得到函数关系式,即可判断图像.
【详解】
解:根据程序框图可得y=﹣x×2+3=﹣2x+3,
y=2x+3的图象与y轴的交点为(0,3),与x轴的交点为(1.5,0).
故选:A.
此题主要考查一次函数的图像,解题的关键是根据程序得到函数解析式.
3、D
【解析】
将这组数据按从小到大的顺序排列后,由中位数的定义可知,这组数据的中位数是9;众数是一组数据中出现次数最多的数,为1.故选D.
4、C
【解析】
由对角线互相平分,可得此四边形是平行四边形;又由对角线相等,可得是矩形;
【详解】
∵四边形的对角线互相平分,
∴此四边形是平行四边形;
又∵对角线相等,
∴此四边形是矩形;
故选B.
考查矩形的判定,常见的判定方法有:
1.有一个角是直角的平行四边形是矩形.
2.对角线相等的平行四边形是矩形.
3.有三个角是直角的四边形是矩形.
5、D
【解析】
根据二次根式的加法、减法、乘法、除法法则分别进行计算即可.
【详解】
A. 与不是同类二次根式,不能进行合并,故A选项错误;
B. ,故B选项错误;
C. ,故C选项错误;
D. ,正确,
故选D.
本题考查了二次根式的运算,熟练掌握二次根式加法、减法、乘法、除法的运算法则是解题的关键.
6、B
【解析】
根据一元二次方程的定义和根的判别式得出k≠0且△=(-3)2-4k×1>0,求出即可.
【详解】
∵关于x的一元二次方程kx2-3x+1=0有两个不相等的实数根,
∴k≠0且△=(-3)2-4k×1>0,
解得:k<且k≠0,
故选B.
本题考查了一元二次方程的定义和根的判别式,能得出关于k的不等式是解此题的关键.
7、D.
【解析】
试题解析:∵直线y=kx+b不经过第三象限,
∴y=kx+b的图象经过第一、二、四象限或第二,四象限,
∵直线必经过二、四象限,
∴k<1.
当图象过一、二四象限,直线与y轴正半轴相交时:b>1.
当图象过原点时:b=1,
∴b≥1,
故选D.
考点:一次函数图象与系数的关系.
8、C
【解析】
先根据旋转得出△ABB'是等腰三角形,再根据旋转的性质以及平行四边形的性质,判定三角形AOB'和△DOC'都是等腰三角形,最后根据∠DOC'的度数,求得∠DC'B'的度数.
【详解】
由旋转得,∠BAB'=40°,AB=AB',∠B=∠AB'C',
∴∠B=∠AB'B=∠AB'C'=70°,
∵AD∥BC,
∴∠DAB'=∠AB'C'=70°,
∴AO=B'O,∠AOB=∠DOC'=40°,
又∵AD=B'C',
∴OD=OC',
∴△ODC'中,∠DC'O=
故选C.
考查了旋转的性质,解决问题的关键是掌握等腰三角形的性质与平行四边形的性质.在旋转过程中,对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、26cm
【解析】
先根据平移的性质得DF=AC,AD=CF=3cm,再由△ABC的周长为20cm得到AB+BC+AC=20cm,然后利用等线段代换可计算出AB+BC+CF+DF+AD=26(cm),于是得到四边形ABFD的周长为26cm.
【详解】
∵△ABC沿BC方向平移3cm得到△DEF,
∴DF=AC,AD=CF=3cm,
∵△ABC的周长为20cm,即AB+BC+AC=20cm,
∴AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=20+3+3=26(cm),
即四边形ABFD的周长为26cm.
故答案是:26cm.
考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.
10、1.888×
【解析】
先用用科学记数法表示为:的形式,然后将保留4位有效数字可得.
【详解】
18884600=1.88846×≈1.888×
故答案为:1.888×
本题考查科学记数法,注意科学记数法还可以表示较小的数,表示形式为:.
11、(15,16).
【解析】
根据一次函数图象上点的特征及正方形的性质求出A1、A2、A3的坐标,找出规律,即可解答.
【详解】
∵直线y=x+1和y轴交于A1,
∴A1的坐标(0,1),
即OA1=1,
∵四边形C1OA1B1是正方形,
∴OC1=OA1=1,
把x=1代入y=x+1得:y=2,
∴A2的坐标为(1,2),
同理A3的坐标为(3,4),
…
∴An的坐标为(2n﹣1﹣1,2n﹣1),
∴A5的坐标是(25﹣1﹣1,25﹣1),即(15,16),
故答案为:(15,16).
本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解决问题的关键.
12、y=2x-3.
【解析】
根据题意可得点B的坐标为(0,-1),AE=2,根据EF平分矩形ABCD的面积,先求出点F的坐标,再利用待定系数法求函数解析式即可.
【详解】
∵AB=2,点A的坐标为(0,1),
∴OB=1,∴点B坐标为(0,-1),
∵点E(2,1),
∴AE=2,ED=AD-AE=1,
∵EF平分矩形ABCD的面积,
∴BF=DE,
∴点F的坐标为(1,-1),
设直线EF的解析式为y=kx+b,将点E和点F的坐标代入可得,
∴
解得k=2,b=-3
∴EF的解析式为y=2x-3.
故答案为:y=2x-3.
本题考查了矩形的性质和待定系数法求一次函数解析式,正确求得点F的坐标为(1,-1)是解决问题的关键.
13、(7,3)
【解析】
先求出点A、B的坐标得到OA、OB的长度,过点作C⊥x轴于C,再据旋转的性质得到四边形是矩形,求出AC、C即可得到答案.
【详解】
令中y=0得x=3,令x=0得y=4,
∴A(3,0),B(0,4),
∴OA=3,OB=4,
由旋转得,=OB=4, =OA=3,
如图:过点作C⊥x轴于C,则四边形是矩形,
∴AC==4,C==3,∠OC=90°,
∴OC=OA+AC=3+4=7,
∴点的坐标是(7,3)
故答案为:(7,3).
此题考查一次函数与坐标轴的交点坐标,矩形的判定及性质,旋转的性质,利用矩形求对应的线段的长是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)详见解析;(2)
【解析】
(1)利用平行线的性质解决问题即可
(2)利用三角形的面积公式求出AABD的面积即可
【详解】
解:(1)如图所示
(2)
本题考查作图-应用与设计,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
15、(1);(2)当时,;(3)或.
【解析】
(1)先求出点E的坐标,再把E的坐标代入解析式即可
(2)根据点E的坐标,结合图象即可解答
(3)过作轴交直线于点、交直线于点,根据题意求出的坐标为,再令,得出的坐标为,根据OE,AB的解析式得出点的坐标为,点的坐标为,即可解答
【详解】
(1)∵直线与直线交于点,点的横坐标为3
∴点的坐标为,代入中
∴
(2)∵点的坐标为,有图像可知,当时,.
(3)过作轴交直线于点、交直线于点
∵
∴
∴点的坐标为
∴
令,∴
∴点的坐标为
∵点,
直线的解析式为,直线的解析式为
∴点的坐标为,点的坐标为
∴
∴
∴
∴或
∴或
此题考查一次函数中的直线位置关系,解题关键在于作辅助线
16、证明见解析.
【解析】
连接BD,利用对角线互相平分来证明即可.
【详解】
证明:连接BD,交AC于点O.
∵四边形ABCD是平行四边形
∴OA=OC OB=OD(平行四边形的对角线互相平分)
又∵AE=CF
∴OA﹣AE=OC﹣CF,即OE=OF
∴四边形BFDE是平行四边形(对角线互相平分的四边形是平行四边形)
本题考查平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质,属于中考常考题型.
17、 (1)见解析;(2)校方安排学生吃午餐时间25 min左右为宜,因为约有90%的学生在25 min内可以就餐完毕
【解析】
(1)找出20名学生在校午餐所需的时间的最大值与最小值,根据(最大值-最小值)÷6可得到组距.然后根据组距列出频数表,画出频数直方图.
(2)由(1)分析即可得解.
【详解】
(1)
(2)校方安排学生吃午餐时间25 min左右为宜,因为约有90%的学生在25 min内可以就餐完毕.
本题考查的是频数分布表的制作以及组数的计算,要能根据频数直方图得到解题的必要的信息.
18、第二周每个小家电的销售价格降了2元
【解析】
设第二周每个小家电的售价降了x元,根据第二周的销量乘以每个的利润加上第一周的销量乘以每个的利润等于4160元,列出方程,求解即可.
【详解】
解:设第二周每个小家电的销售价格降了x元.
根据题意,得,
即.
解这个方程,得,(不符合题意,舍去.)
答:第二周每个小家电的销售价格降了2元.
本题考查了一元二次方程在成本利润问题中的应用,明确销量乘以每个的利润等于总利润是列方程解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1260
【解析】
首先根据外角和与外角和及每个外角的度数可得多边形的边数,再根据多边形内角和公式180(n-2)计算出答案.
【详解】
解:∵多边形的每一个外角都等于,
∴它的边数为:,
∴它的内角和:,
故答案为:.
此题主要考查了多边形的内角和与外角和,根据多边形的外角和计算出多边形的边数是解题关键.
20、两组对边分別平行的四边形是平行四边形
【解析】
根据平行四边形的判定方法即可求解.
【详解】
解:∵两块相同的含有30°角的三角尺
∴AD=BC,AB=CD,∠ADB=∠DBC=90°,∠ABD=∠BDC=30°
∴AB∥CD,AD∥BC
∴四边形ABCD是平行四边形
依据为:两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形(写出一种即可)
故答案为两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形(写出一种即可)
此题主要考查平行四边形的的判定,解题的关键是熟知平行四边形的判定定理.
21、>
【解析】
分别把点A(-1,y1),点B(-1,y1)的坐标代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.
【详解】
∵点A(-1,y1),点B(-1,y1)是函数y=3x的图象上的点,
∴y1=-3,y1=-6,
∵-3>-6,
∴y1>y1.
22、
【解析】
根据题意,可知点B到直线的距离最短,点C到直线的距离最长,求出两个临界点b的值,即可得到取值范围.
【详解】
解:根据题意,点,
∵直线与(包括边界)相交,
∴点B到直线的距离了最短,点C到直线的距离最长,
当直线经过点B时,有
,
∴;
当直线经过点C时,有
,
∴;
∴的取值范围是:.
本题考查了一次函数的图像和性质,以及一次函数的平移问题,解题的关键是掌握一次函数的性质,一次函数的平移,正确选出临界点进行解题.
23、
【解析】
根据矩形的性质就可以得出EF,AP互相平分,且EF=AP,根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.
【详解】
解:∵PE⊥AB,PF⊥AC,∠BAC=90°,
∴∠EAF=∠AEP=∠AFP=90°,
∴四边形AEPF是矩形,
∴EF,AP互相平分.且EF=AP,
∴EF,AP的交点就是M点,
∵当AP的值最小时,AM的值就最小,
∴当AP⊥BC时,AP的值最小,即AM的值最小.
∵AP×BC=AB×AC,
∴AP×BC=AB×AC,
在Rt△ABC中,由勾股定理,得BC==10,
∵AB=6,AC=8,
∴10AP=6×8,
∴AP=
∴AM=,
故答案为:.
考点:(1)、矩形的性质的运用;(2)、勾股定理的运用;(3)、三角形的面积公式
二、解答题(本大题共3个小题,共30分)
24、(1);(2)1<AO<4;(3)见解析.
【解析】
(1) O是中点,E是中点,所以OE=BC=;
(2) 在△ACD中利用三角形的第三边长小于两边之和,大于两边只差;
(3) 延长FO交BC于G点,就可以将BE,FD,EF放在一个三角形中,利用三角形两边之和大于第三边即可.
【详解】
(1)解:∵四边形ABCD为平行四边形,
∴BC=AD=3,OA=OC,
∵点E为AB中点,
∴OE为△ABC的中位线,
∴OE=BC=;
(2)解:在△ABC中,∵AB﹣BC<AC<AB+BC,
而OA=OC,
∴5﹣3<2AO<5+3,
∴1<AO<4;
(3)证明:延长FO交BC于G点,连接EG,如图,
∵四边形ABCD为平行四边形,
∴OB=OD,BC∥AD,
∴∠OBG=∠ODF,
在△OBG和△ODF中
,
∴△OBG≌△ODF,
∴BG=DF,OG=OF,
∵EO⊥OF,
∴EG=EF,
在△BEG中,BE+BG>EG,
∴BE+FD>EF.
本题主要考查中位线的性质,以及通过构造新的全等三角形,应用三角形两边之和大于第三边性质来比较线段的关系.
25、(1)甲框每个2.4米,乙框每个2米;(2)最多可购买甲种边框100个.
【解析】
(1)设每个乙种边框所用材料米,则制作甲盒用(1+20%)x米材料,根据“同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个”,列出方程,即可解答;
(2)设生产甲边框个,则乙边框生产个,再根据“要求制作乙种边框的数量不少于甲种边框数量的2倍”求出y的取值范围,即可解答.
【详解】
解(1)设每个乙种边框所用材料米
则
经检验:是原方程的解,1.2x=2.4,
答:甲框每个2.4米,乙框每个2米.
(2)设生产甲边框个,则乙边框生产个,
则
所以最多可购买甲种边框100个.
此题考查分式方程的应用,一元一次不等式的应用,解题关键在于列出方程.
26、(1)①;②;(2);(3).
【解析】
(1)原式各项利用拆项法变形,计算即可得到结果;
(2)根据已知等式归纳拆项法则,写出即可;
(3)仿照2利用拆项法变形,变一般分式方程解答即可.
【详解】
(1)①
,
②,
(2)∵,,,…,
∴;
(3)仿照(2)中的结论,原方程可变形为
,
即,解得,
经检验,是原分式方程的解.
故原方程的解为.
本题考查了数字的变化规律以及分式方程,学会拆项变形是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
组别(min)
划记
频数
9.5~14.5
3
14.5~19.5
正正
10
19.5~24.5
正
5
24.5~29.5
1
29.5~34.5
0
34.5~39.5
1
相关试卷
这是一份2024年河北省唐山市林西中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年河北省石家庄市第四十中学数学九年级第一学期开学监测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年河北省石家庄市43中学数学九年级第一学期开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。