2024年福建省泉州第十六中学九上数学开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是( )
A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度
C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度
2、(4分)某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡.它们的使用寿命如下表所示:
这批灯泡的平均使用寿命是( )
A.1120小时B.1240小时C.1360小时D.1480小时
3、(4分)点P(﹣1,2)关于y轴对称的点的坐标是( )
A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)
4、(4分)一组数:3,5,4,2,3的中位数是( )
A.2B.3C.3.5D.4
5、(4分)如图所示是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是( )
A.A B.B C.C D.D
6、(4分)下列说法正确的是( )
A.是二项方程B.是二元二次方程
C.是分式方程D.是无理方程
7、(4分)若一个五边形有三个内角都是直角,另两个内角的度数都等于,则等于( )
A.B.C.D.
8、(4分)已知数据:1,2,0,2,﹣5,则下列结论错误的是( )
A.平均数为0B.中位数为1C.众数为2D.方差为34
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图:在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn-1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B2018的坐标是______.
10、(4分)如图,已知在△ABC中,BC边上的高AD与AC边上的高BE交于点F,且∠BAC=45°,BD=6,CD=4,则△ABC的面积为_____.
11、(4分)已知反比例函数,当时,y的取值范围是________.
12、(4分)已知函数,当时,函数值为______.
13、(4分)若等腰三角形的两条边长分别为8cm和16cm,则它的周长为_____cm.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,直线y=x+m与x轴交于点A(-3,0),直线y=-x+2与x轴、y轴分别交于B、C两点,并与直线y=x+m相交于点D,
(1)点D的坐标为 ;
(2)求四边形AOCD的面积;
(3)若点P为x轴上一动点,当PD+PC的值最小时,求点P的坐标.
15、(8分)如图,在中,点,是直线上的两点,,连结,,,.
(1)求证:四边形是平行四边形.
(2)若,,,四边形是矩形,求的长.
16、(8分)已知:如图,在矩形中,、的平分线、分别交、于点,,求证:.
17、(10分)已知等腰三角形ABC的底边BC=20cm,D是腰AB上一点,且CD=16cm,BD=12cm.
(1)求证:CD⊥AB;
(2)求该三角形的腰的长度.
18、(10分)如图,在中,,,的垂直平分线分别交和于点、.求证:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)△ABC中,AB=15,AC=13,高AD=12,则△ABC的面积为______________.
20、(4分)点A(a,b)是一次函数y=x+2与反比例函数的图像的交点,则__________。
21、(4分)如图矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E,F,AB=3,BC=4,则图中阴影部分的面积为_____.
22、(4分)计算:=__.
23、(4分)准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为_____米.
二、解答题(本大题共3个小题,共30分)
24、(8分)如果关于x的方程1+=的解,也是不等式组的解,求m的取值范围.
25、(10分)阅读下列材料:
关于x的方程:的解是,;即的解是;的解是,;的解是,;
请观察上述方程与解的特征,比较关于x的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.
由上述的观察、比较、猜想、验证,可以得出结论:
如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:.
26、(12分) “扫黑除恶”受到广大人民的关注,某中学对部分学生就“扫黑除恶”知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有_______人,扇形统计图中“很了解”部分所对应扇形的圆心角为_______;
(2)请补全条形统计图;
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对“扫黑除恶”知识达到“很了解”和“基本了解”程度的总人数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
利用一次函数图象的平移规律,左加右减,上加下减,得出即可.
【详解】
∵将直线l1:y=-2x-2平移后,得到直线l2:y=-2x+4,
∴-2(x+a)-2=-2x+4,
解得:a=-3,
故将l1向右平移3个单位长度.
故选A.
此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.
2、B
【解析】
先用每组的组中值表示这组的使用寿命,然后根据加权平均数的定义计算.
【详解】
根据题意得:(800×30+1200×30+1600×40)
=×124000
=1240(h).
则这批灯泡的平均使用寿命是1240h.
故选B.
本题考查了加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则(x1w1+x2w2+…+xnwn)÷(w1+w2+…+wn)叫做这n个数的加权平均数.
3、A
【解析】
解:根据关于y轴对称,横坐标互为相反数,纵坐标不变.故应选A
考点:关于x轴、y轴对称的点的坐标
4、B
【解析】
按大小顺序排列这组数据,最中间那个数是中位数.
【详解】
解:从小到大排列此数据为:2,1,1,4,5,位置处于最中间的数是1,
所以这组数据的中位数是1.
故选:B.
此题主要考查了中位数.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
5、B
【解析】
A、是轴对称图形,是中心对称图形,故本选项错误;
B、是轴对称图形,不是中心对称图形,故本选项正确;
C、不是轴对称图形,也不是中心对称图形,故本选项错误;
D、是中心对称图形,是轴对称图形,故本选项错误.
故选B.
6、A
【解析】
根据整式方程、分式方程和无理方程的概念逐一判断即可得.
【详解】
A.方程是一般式,且方程的左边只有2项,此方程是二项方程,此选项正确;
B.x2y−y=2是二元三次方程,此选项错误;
C.是一元一次方程,属于整式方程,此选项错误;
D.是一元二次方程,属于整式方程;
故选A.
本题主要考查无理方程,解题的关键是掌握整式方程、分式方程和无理方程的定义.
7、C
【解析】
多边形的内角和可以表示成(n-2)•180°,因为所给五边形有三个角是直角,另两个角都等于α,列方程可求解.
【详解】
依题意有
3×90+2α=(5-2)•180,
解得α=1.
故选C.
本题考查根据多边形的内角和计算公式求多边形的内角,解答时要会根据公式进行正确运算、变形和数据处理.
8、D
【解析】
根据平均数、方差的计算公式和中位数、众数的定义分别进行解答,即可得出答案.
【详解】
A.这组数据:1,2,0,2,﹣5的平均数是:(1+2+0+2-5)÷5=0,故本选项正确;
B.把这组数按从小到大的顺序排列如下:-5,0,1,2,2,可观察1处在中间位置,所以中位数为1,故本选项正确;
C.观察可知这组数中出现最多的数为2,所以众数为2,故本选项正确;
D. ,故本选项错误,
所以选D
本题考查众数,算术平均数,中位数,方差;熟练掌握平均数、方差的计算公式和中位数、众数的定义是解决本题的关键.由于它们的计算由易到难为众数、中位数、算术平方根、方差,所以考试时可按照这样的顺序对选项进行判断,例如本题前三个选项正确,直接可以选D,就可以不用计算方差了.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
【分析】先求出B1、B2、B3的坐标,探究规律后即可解决问题.
【详解】∵y=x-1与x轴交于点A1,
∴A1点坐标(1,0),
∵四边形A1B1C1O是正方形,
∴B1坐标(1,1),
∵C1A2∥x轴,
∴A2坐标(2,1),
∵四边形A2B2C2C1是正方形,
∴B2坐标(2,3),
∵C2A3∥x轴,
∴A3坐标(4,3),
∵四边形A3B3C3C2是正方形,
∴B3(4,7),
∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,
∴B2018坐标(22018-1,22018-1).
故答案为
【点睛】本题考查一次函数图象上点的特征,正方形的性质等知识,解题的关键是学会从特殊到一般的探究方法,利用规律解决问题,属于中考填空题中的压轴题.
10、1
【解析】
分析:首先证明△AEF≌△BEC,推出AF=BC=10,设DF=x.由△ADC∽△BDF,推出,构建方程求出x即可解决问题;
详解:∵AD⊥BC,BE⊥AC,
∴∠AEF=∠BEC=∠BDF=90°,
∵∠BAC=45°,
∴AE=EB,
∵∠EAF+∠C=90°,∠CBE+∠C=90°,
∴∠EAF=∠CBE,
∴△AEF≌△BEC,
∴AF=BC=10,设DF=x.
∵△ADC∽△BDF,
∴,
∴,
整理得x2+10x﹣24=0,
解得x=2或﹣12(舍弃),
∴AD=AF+DF=12,
∴S△ABC=•BC•AD=×10×12=1.
故答案为1.
点睛:本题考查勾股定理、等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.
11、
【解析】
利用反比例函数的性质,由x的取值范围并结合反比例函数的图象解答即可.
【详解】
∵k=1>0,
∴在每个象限内y随x的增大而减小,
又∵当x=1时,y=1,
当x=2时,y=5,
∴当1<x<2时,5<y<1.
故答案为.
本题主要考查反比例函数的性质,当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.
12、5
【解析】
根据x的值确定函数解析式代入求y值.
【详解】
解:因为>0,所以
故答案为5
本题考查了函数表达式,正确选择相应自变量范围内的函数表达式是解题的关键.
13、1;
【解析】
根据已知条件和三角形三边关系可知;等腰三角形的腰长不可能为3cm,只能为8cm,依此即可求得等腰三角形的周长.
【详解】
解:∵等腰三角形的两条边长分别为3cm,8cm,
∴由三角形三边关系可知;等腰三角形的腰长不可能为8cm,只能为16cm,
∴等腰三角形的周长=16+16+8=1cm.
故答案为1.
本题考查了三角形三边关系及等腰三角形的性质,关键是要分两种情况解答.
三、解答题(本大题共5个小题,共48分)
14、(1)(-1,3);(2);(3) (-,0).
【解析】
(1)把A、B的坐标代入函数解析式,求出函数解析式,即可求出D点的坐标;
(2)根据面积公式求出面积即可;
(3)找出P点的位置,求出直线EC的解析式,即可求出PD点的坐标.
【详解】
解:(1)把A(-3,0)代入y=x+m,得m=,
∵直线y=-x+2与x轴、y轴分别交于B、C两点,
∴B点坐标为(2,0),C(0,2),
解方程组得:,
∴D点坐标为(-1,3);
故答案为(-1,3);
(2)∵直线y=-x+2与x轴、y轴分别交于B、C两点,
∴B点坐标为(2,0),C(0,2),
∴四边形AOCD的面积=S△DAB-S△COB
=×5×3-×2×2
=;
(3)作D关于x轴的对称点E,连接CE,交x轴于P,此时PD+PC的值最小,
∵D点坐标为(-1,3),
∴E点的坐标为(-1,-3),
设直线CE的解析式为y=ax+b,
把E、C的坐标代入得:
解得:a=5,b=2,
即直线CE的解析式为y=5x+2,
当y=0时,x=-,
即P点的坐标为(-,0).
本题考查了函数图象上点的坐标特征,轴对称-最短路线问题等知识点,能综合运用知识点进行计算是解此题的关键.
15、 (1)见解析;(2)
【解析】
(1)连结交于点,由四边形ABCD是平行四边形,可得OA=OC,OD=OB,又因为,从而OE=OF,可证四边形是平行四边形;
(2)由勾股定理可求出BD的长,进而求出OD的长,再由勾股定理求出AO的长,根据矩形的性质可知AO=EO,从而可求出DE的长.
【详解】
(1)连结交于点,
∵四边形ABCD是平行四边形,
∴OA=OC,OD=OB,
∵,
∴OE=OF,
四边形是平行四边形;
(2),,,
,
,
.
四边形是矩形,
,,,
,
.
本题考查了平行四边形的判定与性质,矩形的性质,勾股定理等知识,熟练掌握平行四边形的判定与性质是解答(1)的关键,熟练掌握矩形的性质是解(2)的关键.
16、证明过程见解析
【解析】
求证BE=DF,即求证△ABE△CDF.
【详解】
证明:∵、的平分线、分别交、于点,
∴∠ABE=∠EBD,∠BDF=∠FDC
又四边形ABCD为矩形
∴∠ABD=∠CDB,AB=CD
∴∠ABE=∠EBD=∠BDF=∠FDC
在△ABE和△CDF中
∴△ABE△CDF
∴BE=DF
本题主要考查了平行线以及全等三角形的性质,全等三角形的判定是解决本题的关键.
17、(1)见解析;(2)
【解析】
试题分析:根据勾股定理的逆定理直接证明即可.
设腰长为x,则,根据勾股定理列出方程,解方程即可.
试题解析:
(1)∵BC=20cm,CD=16cm,BD=12cm,满足,
根据勾股定理逆定理可知,∠BDC=90°,即CD⊥AB;
(2)设腰长为x,则,由上问可知,
即:,解得:腰长.
点睛:勾股定理的逆定理:如果三角形中,两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.
18、详见解析
【解析】
连接BE,由垂直平分线的性质可求得∠EBC=∠ABE=∠A=30°,在Rt△BCE中,由直角三角形的性质可证得BE=2CE,则可证得结论.
【详解】
证明:连接,
为边为垂直平分线,
.
,,
,
,
在中,,
,
.
本题主要考查了含30°角的直角三角形的性质,线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、84或24
【解析】
分两种情况考虑:
①当△ABC为锐角三角形时,如图1所示,
∵AD⊥BC,
∴∠ADB=∠ADC=90°,
在Rt△ABD中,AB=15,AD=12,
根据勾股定理得:BD==9,
在Rt△ADC中,AC=13,AD=12,
根据勾股定理得:DC==5,
∴BC=BD+DC=9+5=14,
则S△ABC=BC⋅AD=84;
②当△ABC为钝角三角形时,如图2所示,
∵AD⊥BC,
∴∠ADB=90°,
在Rt△ABD中,AB=15,AD=12,
根据勾股定理得:BD==9,
在Rt△ADC中,AC=13,AD=12,
根据勾股定理得:DC==5,
∴BC=BD−DC=9−5=4,
则S△ABC=BC⋅AD=24.
综上,△ABC的面积为24或84.
故答案为24或84.
点睛:此题考查了勾股定理,利用了分类讨论的数学思想,灵活运用勾股定理是解本题的关键.
20、-8
【解析】
把点A(a,b)分别代入一次函数y=x-1与反比例函数 ,求出a-b与ab的值,代入代数式进行计算即可.
【详解】
∵点A(a,b)是一次函数y=x+2与反比例函数的交点,
∴b=a+2,,即a−b=-2,ab=4,
∴原式=ab(a−b)=4×(-2)=-8.
反比例函数与一次函数的交点问题,对于本题我们可以先分别把点代入两个函数中,在对函数和所求的代数式进行适当变形,然后整体代入即可.
21、1.
【解析】
首先结合矩形的性质证明△AOE≌△COF,得△AOE、△COF的面积相等,从而将阴影部分的面积转化为△BCD的面积.
【详解】
∵四边形ABCD是矩形,
∴OA=OC,∠AEO=∠CFO;
又∵∠AOE=∠COF,
在△AOE和△COF中,
∵,
∴△AOE≌△COF(ASA),
∴S△AOE=S△COF,
∴S阴影=S△AOE+S△BOF+S△COD=S△AOE+S△BOF+S△COD=S△BCD;
∵S△BCD=BC•CD=1,
∴S阴影=1.
故答案为1.
本题主要考查矩形的性质,三角形全等的判定和性质定理,掌握三角形的判定和性质定理,是解题的关键.
22、2
【解析】
解:.故答案为.
23、1.25
【解析】
设小路的宽度为,根据图形所示,用表示出小路的面积,由小路面积为80平方米,求出未知数.
【详解】
设小路的宽度为,由题意和图示可知,小路的面积为
,解一元二次方程,由,可得.
本题综合考查一元二次方程的列法和求解,这类实际应用的题目,关键是要结合题意和图示,列对方程.
二、解答题(本大题共3个小题,共30分)
24、且.
【解析】
先根据分式方程的解法求解方程,再根据分式方程解的情况分类讨论求m的取值,
再解不等式组,根据不等式组的解集和分式方程解的关系即可求解.
【详解】
方程两边同乘,得,,解得,
当时,,,
当时,,,
故当或时有,
方程的解为,其中且,
解不等式组得解集,
由题意得且,解得且,
的取值范围是且.
本题主要考查解含参数的分式方程和解不等式组,解决本题的关键是要熟练掌握解含参数的分式方程.
25、猜想的解是,.验证见解析;,.
【解析】
此题为阅读分析题,解此题要注意认真审题,找到规律:的解为,.据规律解题即可.
【详解】
猜想的解是,.
验证:当时,方程左边,方程右边,
方程成立;
当时,方程左边,方程右边,
方程成立;
的解是,;
由得,
,,
,.
考查解分式方程,通过观察,比较,猜想,验证,可以得出结论.解决此题的关键是理解题意,认真审题,寻找规律.
26、(1)60,108°;(2)见解析;(3)该中学学生中对校园安全知识达到“很了解”和“基本了解”程度的总人数为72人.
【解析】
(1)由很了解的有18人,占30%,可求得接受问卷调查的学生数,继而求得扇形统计图中“很了解”部分所对应扇形的圆心角;(2)由(1)可求得基本了解很少的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.
【详解】
(1)接受问卷调查的学生共有:18÷30%=60(人);
∴扇形统计图中“很了解”部分所对应扇形的圆心角为:360°×30%=108°;
故答案为:60,108°;
(2)60﹣3﹣9﹣18=30;
补全条形统计图得:
(3)根据题意得:900×=720(人),
则估计该中学学生中对校园安全知识达到“很了解”和“基本了解”程度的总人数为72人.
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
题号
一
二
三
四
五
总分
得分
批阅人
使用寿命x/小时
600≤x≤1000
1000≤x≤1400
1400≤x≤1800
灯泡数/个
30
30
40
2024年福建省泉州市泉港区第一中学九上数学开学检测试题【含答案】: 这是一份2024年福建省泉州市泉港区第一中学九上数学开学检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年福建省泉州市名校数学九上开学综合测试试题【含答案】: 这是一份2024年福建省泉州市名校数学九上开学综合测试试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年福建省泉州市成功中学数学九上开学质量检测试题【含答案】: 这是一份2024年福建省泉州市成功中学数学九上开学质量检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。