2024年福建省晋江市南侨中学数学九年级第一学期开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.(A)B.(B)C.(C)D.(D)
2、(4分)为了解学生的体能情况,抽取某学校同年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频数分布直方图.已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,第一小组的频数为5,则第四小组的频数为( )
A.5
B.10
C.15
D.20
3、(4分)如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )
A.10cmB.15cmC.10cmD.20cm
4、(4分)将分式中的x,y的值同时扩大为原来的2015倍,则变化后分式的值( )
A.扩大为原来的2015倍B.缩小为原来的
C.保持不变D.以上都不正确
5、(4分)学校升旗仪式上,徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的( )
A.B.
C.D.
6、(4分)在菱形中,,边上的高为( )
A.B.C.D.
7、(4分)如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是( )
A.x<5B.x>5C.x<﹣4D.x>﹣4
8、(4分)美是一种感觉,本应没有什么客观的标准,但在自然界里,物体形状的比例却提供了在的称与协调上的一种美感的参考,在数学上,这个比例称为黄金分割.在人体由脚底至肚脐的长度与身高的比例上,肚脐是理想的黄金分割点,也就是说,若此比值越接近就越给别人一种美的感觉. 某女士身高为,脚底至肚脐的长度与身高的比为为了追求美,地想利用高跟鞋达到这一效果 ,那么她选的高跟鞋的高度约为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在等腰Rt△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于D,若AB=10,则△BDE的周长等于_.
10、(4分)若关于x的一次函数y=(m+1)x+2m﹣3的图象经过第一、三、四象限,则m的取值范围为_____.
11、(4分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点,则∠ECD的度数为__________度.
12、(4分)如图,在等边三角形ABC中,AB=5,在AB边上有一点P,过点P作PM⊥BC,垂足为M,过点M作MN⊥AC,垂足为N,过点N作NQ⊥AB,垂足为Q.当PQ=1时,BP=_____.
13、(4分)如图,将矩形ABCD沿直线BD折叠,使C点落在C′处,BC′交边AD于点E,若∠ADC′=40°,则∠ABD的度数是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)反比例函数的图象如图所示,,是该图象上的两点,
(1)求的取值范围;(2)比较与的大小.
15、(8分)已知:如图,在四边形ABCD中,AB=CD,AD=BC,点E在CD上,连接AE并延长,交BC的延长线于F.
(1)求证:△ADE∽△FCE;
(2)若AB=4,AD=6,CF=2,求DE的长.
16、(8分)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?
17、(10分)某移动通信公司推出了如下两种移动电话计费方式.
说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费元,当主叫计时不超过分钟不再额外收费,超过分钟时,超过部分每分钟加收元(不足分钟按分钟计算).
(1)请根据题意完成如表的填空:
(2)设某月主叫时间为 (分钟),方式一、方式二两种计费方式的费用分别为(元), (元),分别写出两种计费方式中主叫时间 (分钟)与费用为(元), (元)的函数关系式;
(3)请计算说明选择哪种计费方式更省钱.
18、(10分)如图,在□ABCD中,E、F为对角线BD上的两点,且∠DAE=∠BCF.
(1)求证:AE=CF;
(2)求证:AE∥CF.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知m是一元二次方程的一个根 , 则代数式的值是_____
20、(4分)如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠PBQ=_____度.
21、(4分)在中,,,将绕点A按顺时针方向旋转得到旋转角为,点B,点C的对应点分别为点D,点E,过点D作直线AB的垂线,垂足为F,过点E作直线AC的垂线,垂足为P,当时,点P与点C之间的距离是________.
22、(4分)在菱形ABCD中,M是BC边上的点(不与B,C两点重合),AB=AM,点B关于直线AM对称的点是N,连接DN,设∠ABC,∠CDN的度数分别为,,则关于的函数解析式是_______________________________.
23、(4分)在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,,分别表示小明步行与小刚骑车在同一路上行驶的路程S与时间t的关系.
(1)小刚出发时与小明相距________米.走了一段路后,自行车发生故障进行修理,所用的时间是________分钟.
(2)求出小明行走的路程S与时间t的函数关系式.(写出计算过程)
(3)请通过计算说明:若小刚的自行车不发生故障,保持出发时的速度前进,何时与小明相遇?
25、(10分)化简求值:,其中x=.
26、(12分)如图,矩形ABCD的对角线AC、BD相交于点O,点E、F在BD上,OE=OF.
(1)求证:AE=CF.
(2)若AB=2,∠AOD=120°,求矩形ABCD的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题解析:A、是中心对称图形,不是轴对称图形,故本选项不符合题意;
B、是轴对称图形,不是中心对称图形,故本选项不符合题意;
C、既是轴对称图形又是中心对称图形,故本选项符合题意;
D、不是轴对称图形,是中心对称图形,故本选项不符合题意.
故选C.
2、B
【解析】
根据频率= ,即可求得总数,进而即可求得第四小组的频数.
【详解】
解:总数是5÷0.1=50人;
则第四小组的频数是50×(1-0.1-0.3-0.4)=50×0.2=10,
故选B.
本题考查频率的计算公式,解题关键是熟记公式.
3、D
【解析】
根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长;设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,可求出r;接下来根据圆锥的母线长、底面圆的半径以及圆锥的高构成直角三角形,利用勾股定理可计算出圆锥的高.
【详解】
过O作OE⊥AB于E,如图所示.
∵OA=OB=60cm,∠AOB=120°,
∴∠A=∠B=30°,
∴OE= OA=30cm,
∴弧CD的长==20π,
设圆锥的底面圆的半径为r,则2πr=20π,
解得r=10,
∴由勾股定理可得圆锥的高为:cm.
故选D.
本题考查了勾股定理,扇形的弧长公式,圆锥的计算,圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
4、B
【解析】
将原式中的x、y分别用2015x、2015y代替,化简,再与原分式进行比较.
【详解】
解:∵分式中的x,y的值同时扩大为原来的2015倍,
∴原式变为:=
=
∴缩小为原来的
故选B.
本题考查了分式的基本性质.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.
5、A
【解析】
根据题意:徐徐上升的国旗的高度与时间的变化是稳定的,即为直线上升.
故选A.
6、C
【解析】
先求出对角线BD长,利用菱形的面积等于对角线乘积的一半和底乘以高求解BC边上的高.
【详解】
解:设AC与BD交于点O,
∵四边形ABCD是菱形,
∴AO⊥BO,且AC=2AO,BD=2BO.
在Rt△AOB中利用勾股定理可得BO= =1.
∴BD=2BO=2.
∴菱形的面积为BD×AC=×6×2=21.
设BC变上的高为h,则BC×h=21,即5h=21,h=1.2.
故选C.
本题考查菱形的性质,解题的关键是掌握菱形面积的两种计算方法.
7、A
【解析】
由题意可得:一次函数y=kx+b中,y<0时,图象在x轴下方,x<5,则关于x的不等式kx+b<0的解集是x<5,故选A.
8、C
【解析】
根据已知条件算出下半身身高,然后设选的高跟鞋的高度为xcm,根据比值是0.618列出方程,解方程即可
【详解】
根据已知条件得下半身长是160×0.6=96cm
设选的高跟鞋的高度为xcm,
有
解得x≈7.5
经检验x≈7.5是原方程的解
故选C
本题考查分式方程的应用,能够读懂题意列出方程是本题关键
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
由题中条件可得Rt△ACD≌Rt△AED,进而得出AC=AE,然后把△BDE的边长通过等量转化即可得出结论.
【详解】
解:∵AD平分∠CAB,AC⊥BC于点C,DE⊥AB于E,
∴CD=DE.
又∵AD=AD,
∴Rt△ACD≌Rt△AED,
∴AC=AE.
又∵AC=BC,
∴BC=AE,
∴△DBE的周长为:DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB=1.
故答案为:1.
本题主要考查了角平分线的性质以及全等三角形的判定及性质,能够掌握并熟练运用.
10、﹣1<m<
【解析】
根据一次函数y=kx+b(k≠0)的图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.
【详解】
解:由一次函数y=(m+1)x+2m﹣3的图象经过第一、三、四象限,知
m+1>0,且2m﹣3<0,
解得,﹣1<m<.
故答案为:﹣1<m<.
本题考查一次函数图象与系数的关系,解题的关键是掌握一次函数图象与系数的关系.
11、45°
【解析】
求出∠ACD=67.5°,∠BCD=22.5°,根据三角形内角和定理求出∠B=67.5°,根据直角三角形斜边上中线性质求出BE=CE,推出∠BCE=∠B=67.5°,代入∠ECD=∠BCE-∠BCD求出即可.
【详解】
∵∠ACD=3∠BCD,∠ACB=90°,
∴∠ACD=67.5°,∠BCD=22.5°,
∵CD⊥AB,
∴∠CDB=90°,
∴∠B=180°−90°−22.5°=67.5°,
∵∠ACB=90°,E是斜边AB的中点,
∴BE=CE,
∴∠BCE=∠B=67.5°,
∴∠ECD=∠BCE−∠BCD=67.5°−22.5°=45°.
本题考查三角形内角和定理和直角三角形斜边上中线性质,解题的关键是掌握三角形内角和定理和直角三角形斜边上中线性质.
12、或
【解析】
分析:由题意可知P点可能靠近B点,也可能靠近A点,所以需要分为两种情况:设BM=x,AQ=y,
若P靠近B点,由题意可得∠BPM=30°,根据直角三角形的性质可得BP=2BM=2x,AN=2y,CM=2CN=10-4y,再根据AB=BC=5,PQ=1,列方程组,解出x、y即可求得BP的长;
若点P靠近A点,同理可得,求解即可.
详解:设BM=x,AQ=y,
若P靠近B点,如图
∵等边△ABC,
∴AB=BC=AC=5,∠A=∠B=∠C=60°
∵PM⊥BC
∴∠BMP=90°
则Rt△BMP中,∠BPM=30°,
∴BM=BP
则BP=2x
同理AN=2y,
则CN=5-2y
在Rt△BCM中,CM=2CN=10-4y
∵AB=BC=5,PQ=1
∴
解得
∴BP=2x=;
若点P靠近A点,如图
由上面的解答可得BP=2x,AQ=y,CM=10-4y
∴
解得
∴BP=2x=
综上可得BP的长为:或.
点睛:此题主要考查了等边三角形的性质和30°角的直角三角形的性质,关键是正确画图,分两种情况讨论,注意掌握和明确方程思想和数形结合思想在解题中的作用.
13、65°
【解析】
直接利用翻折变换的性质得出∠2=∠3=25°,进而得出答案.
【详解】
解:由题意可得:∠A=∠C′=90°,∠AEB=∠C′ED,
故∠1=∠ADC′=40°,
则∠2+∠3=50°,
∵将矩形ABCD沿直线BD折叠,使C点落在C′处,
∴∠2=∠3=25°,
∴∠ABD的度数是:∠1+∠2=65°,
故答案为65°.
本题考查了矩形的性质、翻折变换的性质,正确得出∠2=∠3=25°是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2).
【解析】
(1)根据反比例函数的图象和性质可知2m-1>0,从而可以解答本题;
(2)根据反比例函数的性质可以判断b1与b2的大小.
【详解】
解:(1)由,得.
(2)由图知,随增大而减小.
又∵,
.
本题考查反比例函数图象上点的坐标特征、反比例函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
15、(1)见解析;(2)DE=2
【解析】
(1)根据已知条件得到四边形ABCD是平行四边形,根据AD∥BC证得∠DAE=∠F,∠D=∠DCF即可得到结论;
(2)根据(1)的△ADE∽△FCE列式即可求出答案.
【详解】
(1)证明:∵ 四边形ABCD中,AB=CD,AD=BC,
∴ 四边形ABCD是平行四边形.
∴ AD∥BC.
∴ ∠DAE=∠F,∠D=∠DCF.
∴ △ADE∽△FCE.
(2)解:∵四边形ABCD是平行四边形,且AB=1,
∴AB=CD=1.
又∵△ADE∽△FCE,
∴
∵AD=6,CF=2,
∴
∴DE=2.
此题考查平行四边形的判定与性质,相似三角形的判定与性质,是一道较为基础的题型.
16、人行通道的宽度为2米.
【解析】
设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30﹣3x)m,宽为(24﹣2x)m,根据矩形绿地的面积为480m2,即可列出关于x的一元二次方程,解方程即可得出x的值,经检验后得出x=20不符合题意,此题得解.
【详解】
解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30﹣3x)m,宽为(24﹣2x)m,
由已知得:(30﹣3x)•(24﹣2x)=480,
整理得:x2﹣22x+40=0,
解得:x1=2,x2=20,
当x=20时,30﹣3x=﹣30,24﹣2x=﹣16,
不符合题意,
答:人行通道的宽度为2米.
本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.
17、(1),;(2),;(3)当时方式一省钱;当时,方式二省钱,当时;方式一省钱,当为分钟、分钟时,两种方式费用相同
【解析】
(1)按照表格中的收费方式计算即可;
(2)根据表格中的收费方式,对t进行分段列出函数关系式;
(3)根据t的取值范围,列出不等式解答即可.
【详解】
解:(1)由题意可得:月主叫时间分钟时,方式一收费为元;月主叫时间分钟时,方式二收费为元;
故答案为:;.
(2)由题意可得: (元)的函数关系式为:
(元)的函数关系式为:
(3)①当时方式一更省钱;
②当时,若两种方式费用相同,则当.
解得:
即当 ,两种方式费用相同,
当时方式一省钱
当时,方式二省钱;
③当时,若两种方式费用相同,则当,
解得:
即当,两种方式费用相同,当时方式二省钱,
当时,方式一省钱;
综上所述,当时方式一省钱;当时,方式二省钱,当时,方式一省钱,当为分钟、分钟时,两种方式费用相同.
本题考查了一次函数中方案选择问题,解题的关键是表达出不同收费方式的函数关系式,再利用不等式的知识对不同时间内进行讨论.
18、(1)证明见解析(2)证明见解析
【解析】
试题分析:(1)根据平行四边形性质得出AB=DC,AD=BC,AB∥CD,AD∥BC,推出∠ABF=∠CDE,∠ADE=∠CBF,根据全等三角形的判定推出△DAE≌△BCF,即可得;
(2)由△DAE≌△BCF,得出∠DEA=∠BFC,从而得∠AEF=∠DFC,继而得AE∥CF.
试题解析:(1)∵四边形ABCD是平行四边形,
∴AB=DC,AD=BC,AB∥CD,AD∥BC,
∴∠ABF=∠CDE,∠ADE=∠CBF,
在△DAE和△BCF中,,
∴△DAE≌△BCF(ASA),∴AE=CF;
(2)∵△DAE≌△BCF,∴∠DEA=∠BFC,∴∠AEF=∠DFC,∴AE∥CF.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
把代入方程,得出关于的一元二次方程,再整体代入.
【详解】
当时,方程为,
即,
所以,.
故答案为:.
本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了整体代入的思想.
20、1
【解析】
根据折叠的性质知:可知:BN=BP,从而可知∠BPN的值,再根据∠PBQ=∠CBQ,可将∠PBQ的角度求出.
【详解】
根据折叠的性质知:BP=BC,∠PBQ=∠CBQ
∴BN=BC=BP
∵∠BNP=90°
∴∠BPN=1°
∴∠PBQ=×60°=1°.
故答案是:1.
已知折叠问题就是已知图形的全等,根据边之间的关系,可将∠PBQ的度数求出.
21、3或1.
【解析】
由旋转的性质可知△ACB≌△AED,推出∠CAB=∠EAD=∠CBA,则当∠DAF=∠CBA时,分两种情况,一种是A,F,E三点在同一直线上,另一种是 D,A,C在同一条直线上,可分别求出CP的长度.
【详解】
解:∵AC=BC=10,
∴∠CAB=∠CBA,
由旋转的性质知,△ACB≌△AED,
∴AE=AC=10,∠CAB=∠EAD=∠CBA,
①∵∠DAF=∠CBA,
∴∠DAF=∠EAD,
∴A,F,E三点在同一直线上,如图1所示,
过点C作CH⊥AB于H,
则AH=BH=AB=7,
∵EP⊥AC,
∴∠EPA=∠CHA=90°,
又∵∠CAH=∠EAP,CA=EA,
∴△CAH≌△EAP(AAS),
∴AP=AH=7,
∴PC=AC-AP=10-7=3;
②当D,A,C在同一条直线上时,如图2,
∠DAF=∠CAB=∠CBA,
此时AP=AD=AB=7,
∴PC=AC+AP=10+7=1.
故答案为:3或1.
本题考查了旋转的性质,等腰三角形的性质,全等三角形的判定等,解题的关键是能够分类讨论,求出两种情况的结果.
22、
【解析】
首先根据菱形的性质得出∠ABC=∠ADC=,AB=BC=CD=AD,AD∥BC,进而得出∠BAM,然后根据对称性得出∠AND=∠AND==180°-,分情况求解即可.
【详解】
∵菱形ABCD中,AB=AM,
∴∠ABC=∠ADC=,AB=BC=CD=AD,AD∥BC
∴∠ABC+∠BAD=180°,
∴∠BAD=180°-
∵AB=AM,
∴∠AMB=∠ABC=
∴∠BAM=180°-∠ABC-∠AMB=180°-2
连接BN、AN,如图:
∵点B关于直线AM对称的点是N,
∴AN=AB,∠MAN=∠BAM=180°-2,即∠BAN=2∠BAM=360°-4
∴AN=AD,∠DAN=∠BAD-∠BAN=180°--(360°-4)=3-180°
∴∠AND=∠AND==180°-
∵M是BC边上的点(不与B,C两点重合),
∴
∴
若,即时,
∠CDN=∠ADC-∠AND=,即;
若即时,
∠CDN=∠AND-∠ADC =,即
∴关于的函数解析式是
故答案为:.
此题主要考查菱形的性质与一次函数的综合运用,熟练掌握,即可解题.
23、2+
【解析】
试题分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.
∵PE⊥AB,AB=2,半径为2,
∴AE=AB=,PA=2, 根据勾股定理得:PE=1,
∵点A在直线y=x上,
∴∠AOC=45°,
∵∠DCO=90°,
∴∠ODC=45°,
∴△OCD是等腰直角三角形,
∴OC=CD=2,
∴∠PDE=∠ODC=45°,
∴∠DPE=∠PDE=45°,
∴DE=PE=1,
∴PD=
∵⊙P的圆心是(2,a),
∴a=PD+DC=2+.
本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中.本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45°,这一个条件的应用也是很重要的.
二、解答题(本大题共3个小题,共30分)
24、(1)3000,12;(2);(3)若小刚的自行车不发生故障,保持出发时的速度前进,20分钟与小刚相遇.
【解析】
(1)根据函数图象可以直接得出答案;
(2)根据直线lA经过点(0,3000),(30,6000)可以求得它的解析式;
(3)根据函数图象可以求得lB的解析式与直线lA联立方程组即可求得相遇的时间.
【详解】
解:(1)根据函数图象可知,小刚出发时与小明相距3000米.走了一段路后,自行车发生故障进行修理,所用的时间是12分钟.
故答案为:3000;12;
(2)根据函数图象可知直线经过点,.
设直线的解析式为:,则
解得,,
即小明行走的路程S与时间t的函数关系式是:;
(3)设直线的解析式为:,
∵点(10,2500)在直线上,
得,
.
解得,.
故若小刚的自行车不发生故障,保持出发时的速度前进,20分钟与小刚相遇.
本题考查一次函数的应用,解题的关键是利用数形结合的思想对图象进行分析,找出所求问题需要的条件.
25、
【解析】
首先按照乘法分配律将原式变形,然后根据分式的基本性质进行约分,再去括号,合并同类项即可进行化简,然后将x的值代入化简后的式子中即可求解.
【详解】
原式=
当时,原式.
本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.
26、(1)见解析;(2)4
【解析】
(1)由矩形的性质得出OA=OC,OB=OD,AC=BD,∠ABC=90°,证出OE=OF,由SAS证明△AOE≌△COF,即可得出AE=CF;
(2)证出△AOB是等边三角形,得出OA=AB=2,AC=2OA=4,在Rt△ABC中,由勾股定理求出BC= =,即可得出矩形ABCD的面积.
【详解】
(1)证明:∵四边形ABCD是矩形,
∴OA=OC,
在△AOE和△COF中,
,
∴△AOE≌△COF(SAS),
∴AE=CF;
(2)解:∠AOD=120°,
所以,∠AOB=60°,
∵OA=OC,OB=OD,AC=BD,
∴OA=OB,
∴△AOB是等边三角形,
∴OA=AB=2,
∴AC=2OA=4,
在Rt△ABC中,BC=,
∴矩形ABCD的面积=AB•BC=2×2=4.
此题考查全等三角形的判定与性质,矩形的性质,解题关键在于利用勾股定理进行计算
题号
一
二
三
四
五
总分
得分
批阅人
月使用费/元
主叫限定时间/分钟
主叫超时费(元/分钟)
方式一
方式二
月主叫时间分钟
月主叫时间分钟
方式一收费/元
______________
方式二收费/元
_______________
2024年福建省晋江市养正中学数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份2024年福建省晋江市养正中学数学九年级第一学期开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年福建省晋江市南侨中学数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2024年福建省晋江市南侨中学数学九年级第一学期开学检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
福建省晋江市南侨中学2021-2022学年九年级上学期期中数学试题(原卷版+解析版): 这是一份福建省晋江市南侨中学2021-2022学年九年级上学期期中数学试题(原卷版+解析版),文件包含精品解析福建省晋江市南侨中学2021-2022学年九年级上学期期中数学试题原卷版docx、精品解析福建省晋江市南侨中学2021-2022学年九年级上学期期中数学试题解析版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。