2024-2025学年浙江省江北区九上数学开学考试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在矩形中,动点从点开始沿的路径匀速运动到点停止,在这个过程中,的面积随时间变化的图象大致是( )
A.B.
C.D.
2、(4分)如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为( )
A.()7B.2()7C.2()8D.()9
3、(4分)已知一次函数,y随着x的增大而减小,且,则它的大致图象是( )
A.B.C.D.
4、(4分)已知,则下列不等式中不正确的是( )
A.B.C.D.
5、(4分)已知直线y1=2x与直线y2=﹣2x+4相交于点A.有以下结论:①点A的坐标为A(1,2);②当x=1时,两个函数值相等;③当x<1时,y1<y2;④直线y1=2x与直线y2=2x﹣4在平面直角坐标系中的位置关系是平行.其中正确的是( )
A.①③④B.②③C.①②③④D.①②③
6、(4分)如图,在长为31m,宽为10m的矩形空地上修建同样宽的道路(图中阴影部分),剩余的空地上种植草坪,使草坪的面积为540m1.设道路的宽为xm,根据题意,下面列出的方程正确的是( )
A.31x+10x﹣1x1=540
B.31x+10x=31×10﹣540
C.(31﹣x)(10﹣x)=540
D.(31﹣x)(10﹣x)=31×10﹣540
7、(4分)若在反比例函数的图像上,则下列结论正确的是( )
A.B.
C.D.
8、(4分)如图,点A(0,2),在x轴上取一点B,连接AB,以A为圆心,任意长为半径画弧,分别交OA、AB于点M、N,再以M、N为圆心,大于MN的长为半径画弧,两弧交于点D,连接AD并延长交x轴于点P.若△OPA与△OAB相似,则点P的坐标为( )
A.(1,0)B.(,0)C.(,0)D.(2,0)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有____m.
10、(4分)已知点及第二象限的动点,且.设的面积为,则关于的函数关系式为________.
11、(4分)在函数y=中,自变量x的取值范围是_______.
12、(4分)某天工作人员在一个观测站测得:空气中PM2.5含量为每立方米0.0000023g,则将0.0000023用科学记数法表示为_____.
13、(4分)如图,矩形的对角线相交于点,过点作交于点,若,的面积为6,则___.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平行四边形ABCD中,AE、AF是平行四边形的高,,,,DE交AF于G.
(1)求线段DF的长;
(2)求证:是等边三角形.
15、(8分)一家公司准备招聘一名英文翻译,对甲、乙和丙三名应试者进行了听、说、读、写 的英语水平测试,他们各项的成绩(百分制)如下:
(1)如果这家公司按照这三名应试者的平均成绩(百分制)计算,从他们的成绩看,应该录取谁?
(2)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照 3∶4∶2∶1 的权重确定,计算三名应试者的平均成绩(百分制),从他们的成绩看, 应该录取谁?
(3)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照 1∶2∶3∶4 的权重确定,计算三名应试者的平均成绩(百分制).从他们的成绩看, 应该录取谁?
16、(8分)如图,在ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连结DE,CF.
(1)求证:四边形CEDF是平行四边形;
(2)若AB=4,AD=6,∠B=60°,求DE的长.
17、(10分)如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动速度为lcm/s,连接PO并延长交BC于点Q.设运动时间为t(s)(0<t<5)
(1)当t为何值时,四边形ABQP是平行四边形?
(2)设四边形OQCD的面积为y(cm2),当t=4时,求y的值.
18、(10分)由于受到手机更新换代的影响,某手机店经销的甲型号手机二月份售价比一月份售价每台降价500元.如果卖出相同数量的甲型号手机,那么一月份销售额为9万元,二月份销售额只有8万元.
(1)一月份甲型号手机每台售价为多少元?
(2)为了提高利润,该店计划三月份加入乙型号手机销售,已知甲型号每台进价为3500元,乙型号每台进价为4000元,预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机共20台,请问有几种进货方案?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若y=,则x+y= .
20、(4分)函数中,自变量x的取值范围是 ▲ .
21、(4分)当 = ______ 时,分式的值为0.
22、(4分)根式+1的相反数是_____.
23、(4分)如图是一次函数y=kx+b的图象,当y<0时,x的取值范围是_________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)甲乙两个工程队分别同时开挖两条600米长的管道,所挖管道长度(米)与挖掘时间(天)之间的关系如图所示,则下列说法中:
①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前1天完成任务;④当时,甲乙两队所挖管道长度相同,不正确的个数有( )
A.4个B.3个C.2个D.1个
25、(10分)如图,已知,直线y=2x+3与直线y=-2x-1,求ΔABC的面积.
26、(12分)国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区.现要把228吨物资从某地运往青海甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:
(1)求这两种货车各用多少辆?
(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);
(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据三角形的面积可知当P点在AB上时,的面积随时间变大而变大,当P点在AD上时,△PBC的面积不会发生改变,当P点在CD上时,的面积随时间变大而变小.
【详解】
解:当P点在AB上时,的面积= ,则的面积随时间变大而变大;
当P点在AD上时,的面积=,则的面积不会发生改变;
当P点在CD上时,的面积=,则的面积随时间变大而变小,且函数图象的斜率应与P点在AB上时相反;
综上可得B选项的图象符合条件.
故选B.
本题主要考查三角形的面积公式,函数图象,解此题关键在于根据题意利用三角形的面积公式分段对函数图象进行分析.
2、B
【解析】
根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.
【详解】
解:∵A0(1,0),
∴OA0=1,
∴点B1的横坐标为1,
∵B1,B2、B3、…、B8在直线y=2x的图象上,
∴B1纵坐标为2,
∴OA1=OB1=,
∴A1(,0),
∴B2点的纵坐标为,
于是得到B3的纵坐标为2…
∴B8的纵坐标为2
故选:B.
本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出Bn的坐标的变化规律.
3、A
【解析】
由y随着x的增大而减小,可知,根据k,b的取值范围即可确定一次函数所经过的象限.
【详解】
解:y随着x的增大而减小,
又
一次函数的图像经过第一、二、四象限,不经过第三象限.
故答案为:A
本题考查了一次函数的图像与性质,确定k的取值范围是解题的关键.
4、D
【解析】
根据不等式的性质逐项分析即可.
【详解】
A. ∵,∴ ,故正确;
B. ∵,∴,故正确;
C. ∵,∴,故正确;
D. ∵,∴,故不正确;
故选D.
本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.
5、C
【解析】
∵将A(1,2)代入y1和y2中可得左边=右边,
∴①是正确的;
∵当x=1时,y1=2,y2=2,故两个函数值相等,
∴②是正确的;
∵x<1,
∴2x<2,-2x+4>2,
∴y1<y2,
∴③是正确的;
∵直线y2=2x-4可由直线y1=2x向下平移4个单位长度可得,
∴直线y1=2x与直线y2=2x-4的位置关系是平行,
∴④是正确的;
故选C.
6、C
【解析】
把道路进行平移,可得草坪面积=长为31﹣x,宽为10﹣x的面积,把相关数值代入即可求解.
【详解】
解:把道路进行平移,可得草坪面积为一个矩形,长为31﹣x,宽为10﹣x,
∴可列方程为:(31﹣x)(10﹣x)=2.
故选:C.
本题考查了由实际问题抽象出一元二次方程,找准等量关系,是正确列出一元二次方程的关键.
7、D
【解析】
将点A(a,b)代入反比例函数的解析式,即可求解.
【详解】
解:∵A(a,b)在反比例函数的图象上,
∴,即ab=-2<1,
∴a与b异号,
∴<1.
故选D.
本题考查了反比例函数图象上点的坐标特征,函数图象上的点,一定满足函数的解析式.
8、C
【解析】
根据点D的画法可得出AD平分∠OAB,由角平分线的性质结合相似三角形的性质可得出∠OBA=∠OAB,利用二角互补即可求出∠OBA=∠OAP=30°,通过解含30度角的直角三角形即可得出点P的坐标.
【详解】
解:由点D的画法可知AD平分∠OAB.
∵△OPA∽△OAB,
∴∠OAP=∠OBA=∠OAB.
∵∠OAB+∠OBA=∠OAB+∠OAB=90°,
∴∠OAB=60°,∠OAP=30°,
∴AP=2OP.
在Rt△OAP中,∠AOP=90°,OA=2,
,
∴OP=,
∴点P的坐标为(,0).
故选:C.
本题考查了基本作图、角平分线的性质、相似三角形的性质以及解含30度角的直角三角形,求出∠OAP=30°是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
解:解如图所示:在RtABC中,BC=3,AC=5,
由勾股定理可得:AB2+BC2=AC2
设旗杆顶部距离底部AB=x米,则有32+x2=52,
解得x=1
故答案为:1.
本题考查勾股定理.
10、
【解析】
根据即可列式求解.
【详解】
如图,∵
∴
∴点在上,
∴,
故.
此题主要考查一次函数与几何综合,解题的关键是熟知一次函数的图像与性质、三角形的面积公式.
11、x≥﹣2且x≠0
【解析】
根据题意得x+2≥0且x≠0,即x≥-2且x≠0.
12、2.3×10﹣1.
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
0.0000023左起第一个不为零的数字前面有1个0,
所以0.000 0023=2.3×10﹣1,
故答案为2.3×10﹣1.
本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
13、
【解析】
首先连接EC,由题意可得OE为对角线AC的垂直平分线,可得CE=AE,S△AOE=S△COE=2,继而可得AE•BC=1,则可求得AE的长,即EC的长,然后由勾股定理求得答案.
【详解】
解:连接EC.
∵四边形ABCD是矩形
∴AO=CO,且OE⊥AC,
∴OE垂直平分AC
∴CE=AE,S△AOE=S△COE=2,
∴S△AEC=2S△AOE=1.
∴AE•BC=1,
又∵BC=4,
∴AE=2,
∴EC=2.
∴BE=
故答案为:
本题考查了矩形的性质、勾股定理以及三角形的面积问题.此题难度适中,正确做出图形的辅助线是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)是等边三角形,见解析.
【解析】
(1)根据AE、AF是平行四边形ABCD的 高,得 ,,又,,所以有﹐,则求出CD,再根据,则可求出DF的长;(2)根据三角形内角和定理求出,求出,再求出,则可证明.
【详解】
解:(1)∵在平行四边形ABCD中AE、AF是高,
∴,,
∴,,
∵中,,
∴﹐,
∵四边形ABCD是平行四边形,,,
∴,,
∵,,∴,
(2)证明:∵中,,
∴,∴,
∵四边形ABCD是平行四边形,,
∴,,∴
∴,∴,
∵由(1)知∴
∵,,∴,
∴,
∴是等边三角形.
本题考查了平行四边形的性质、三角形内角和定理、等边三角形的判定等知识点,熟练掌握性质及定理是解题的关键.
15、(1) 应该录取丙;(2) 应该录取甲;(3)应该录取乙
【解析】
(1)分别算出甲乙丙的平均数,比较即可;
(2)由听、说、读、写按照的比3∶4∶2∶1确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可;
(3) 由听、说、读、写按照的比1∶2∶3∶4确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可.
【详解】
(1)甲的平均成绩:
乙的平均成绩:
丙的平均成绩:
∵80.5>80.25>80
∴应该录取丙
(2)甲的平均成绩:
乙的平均成绩:
丙的平均成绩:
∵82.1>81>79.1
∴应该录取甲
(3)甲的平均成绩:
乙的平均成绩:
丙的平均成绩:
∵81.6>80.1>78.8
∴应该录取乙.
本题考查的是加权平均数的实际应用,熟练掌握加权平均数是解题的关键.
16、(1)见解析(2)
【解析】
试题分析:(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF是平行四边形;
(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.
【详解】
试题解析:(1)证明:在▱ABCD中,AD∥BC,且AD=BC.
∵F是AD的中点,
∴DF=AD.
又∵CE=BC,
∴DF=CE,且DF∥CE,
∴四边形CEDF是平行四边形;
(2)如图,过点D作DH⊥BE于点H.
在▱ABCD中,∵∠B=60°,
∴∠DCE=60°.
∵AB=4,
∴CD=AB=4,
∴CH=CD=2,DH=2.
在▱CEDF中,CE=DF=AD=3,则EH=1.
∴在Rt△DHE中,根据勾股定理知DE=.
考点:平行四边形的判定与性质.
17、(1)当t=1.5s时,四边形ABQP是平行四边形,理由详见解析;(1)5.4cm1.
【解析】
(1)求出和,根据平行四边形的判定得出即可;
(1)先求出高AM和ON的长度,再求出和的面积,再求出答案即可.
【详解】
(1)当时,四边形ABQP是平行四边形,理由如下:
∵四边形ABCD是平行四边形
∴
∴
在和中,
∴
∴,
∵
∴
即
∴四边形ABQP是平行四边形
故当时,四边形ABQP是平行四边形;
(1)过A作于M,过O作于N
∵
∴在中,由勾股定理得:
由三角形的面积公式得:,即
∴
∵
∴
∵
∴
∴
在和中,
∴
∴
∵
∴的面积为
当时,
∴的面积为
∴
故y的值为.
本题考查了平行四边形的性质和判定、三角形的面积、全等三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.
18、(1)一月份甲型号手机每台售价为4500元;(2)共有5种进货方案.
【解析】
(1)设一月份甲型号手机每台售价为x元,则二月份甲型号手机每台售价为(x-500)元,根据数量=总价÷单价结合一二月份甲型号手机的销售量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设购进甲型号手机m台,则购进乙型号手机(20-m)台,根据总价=单价×数量结合总价不多于7.6万元且不少于7.4万元,即可得出关于m的一元一次不等式组,解之取其正值即可得出结论.
【详解】
解:(1)设一月份甲型号手机每台售价为x元,则二月份甲型号手机每台售价为(x﹣500)元,
根据题意得:,
解得:x=4500,
经检验,x=4500是所列分式方程的解,且符合题意.
答:一月份甲型号手机每台售价为4500元.
(2)设购进甲型号手机m台,则购进乙型号手机(20﹣m)台,
根据题意得:,
解得:8≤m≤1.
∵m为正整数,
∴m=8或9或10或11或1.
∴共有5种进货方案.
本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
试题解析:∵原二次根式有意义,
∴x-3≥0,3-x≥0,
∴x=3,y=4,
∴x+y=1.
考点:二次根式有意义的条件.
20、.
【解析】
试题分析:由已知:x-2≠0,解得x≠2;
考点:自变量的取值范围.
21、-2
【解析】
分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.
【详解】
分式的值为1,
即|x|-2=1,x=±2,
∵x-2≠1,
∴x≠2,
即x=-2,
故当x=-2时,分式的值为1.
故答案为:-2.
此题考查了分式的值为1的条件.由于该类型的题易忽略分母不为1这个条件,所以常以这个知识点来命题.
22、
【解析】
本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.
【详解】
解: +1的相反数是﹣﹣1,
故答案为:﹣﹣1.
本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.
23、
【解析】
根据函数图象与x轴的交点坐标,当y<0即图象在x轴下侧,求出即可.
【详解】
当y<0时,图象在x轴下方,
∵与x交于(1,0),
∴y<0时,自变量x的取值范围是x<1,
故答案为:x<1.
本题考查了一次函数与一元一次不等式,解题的关键是运用观察法求自变量取值范围通常是从交点观察两边得解.
二、解答题(本大题共3个小题,共30分)
24、D
【解析】
根据函数图像中数据一次计算出各小题,从而可以解答本题.
【详解】
①项,根据图象可得,甲队6天挖了600米,故甲队每天挖:600÷6=100(米),故①项正确.
②项,根据图象可知,乙队前两天共挖了300米,到第6天挖了500米,所以在6-2=4天内一共挖了:200(米),故开挖两天后每天挖:200÷4=50(米),故②项正确.
③项,根据图象可得,甲队完成任务时间是6天,乙队完成任务时间是:2+300÷50=8(天),故甲队比乙队提前8-6=2(天)完成任务,故③项错误;
④项,根据①,当x=4时,甲队挖了:400(米),根据②,乙队挖了:300+2×50=400(米),所以甲、乙两队所挖管道长度相同,故④项正确.
综上所述,不正确的有③,共1个.
故本题正确答案为D.
本题考查的是函数图像,熟练掌握函数图像是解题的关键.
25、2
【解析】
将直线y=2x+3与直线y=−2x−1组成方程组,求出方程组的解即为C点坐标,再求出A、B的坐标,得到AB的长,即可求出△ABC的面积.
【详解】
解:将直线y=2x+3与直线y=-2x-1联立成方程组得:
解得,即C点坐标为(-1,1).
∵直线y=2x+3与y轴的交点坐标为(0,3),直线y=-2x-1与y轴的交点坐标为(0,-1),
∴AB=4,
∴.
本题考查了两条直线相交的问题,熟知函数图象上点的坐标特征是解题的关键.
26、(1)大货车用8辆,小货车用1辆(2)w=70a+11220(0≤a≤8且为整数)(3)使总运费最少的调配方案是:2辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为3元
【解析】
(1)设大货车用x辆,则小货车用18-x辆,根据运输228吨物资,列方程求解.
(2)设前往甲地的大货车为a辆,则前往乙地的大货车为(8-a)辆,前往甲地的小货车为(9-a)辆,前往乙地的小货车为辆,根据表格所给运费,求出w与a的函数关系式.
(3)结合已知条件,求a的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.
【详解】
解:(1)设大货车用x辆,则小货车用(18-x)辆,根据题意得
16x+1(18-x)=228 ,解得x=8,
∴18-x=18-8=1.
答:大货车用8辆,小货车用1辆.
(2)w=720a+800(8-a)+200(9-a)+620=70a+11220,
∴w=70a+11220(0≤a≤8且为整数).
(3)由16a+1(9-a)≥120,解得a≥2.
又∵0≤a≤8,∴2≤a≤8且为整数.
∵w=70a+11220,k=70>0,w随a的增大而增大,
∴当a=2时,w最小,最小值为W=70×2+11220=3.
答:使总运费最少的调配方案是:2辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为3元.
题号
一
二
三
四
五
总分
得分
应试者
听
说
读
写
甲
82
86
78
75
乙
73
80
85
82
丙
81
82
80
79
运往地
车 型
甲 地(元/辆)
乙 地(元/辆)
大货车
720
800
小货车
500
650
2024-2025学年浙江省湖州市九上数学开学监测试题【含答案】: 这是一份2024-2025学年浙江省湖州市九上数学开学监测试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年浙江省杭州市育才中学数学九上开学调研模拟试题【含答案】: 这是一份2024-2025学年浙江省杭州市育才中学数学九上开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年浙江省杭州市九上数学开学质量检测试题【含答案】: 这是一份2024-2025学年浙江省杭州市九上数学开学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。