四川省成都市金堂县淮口中学校2024-2025学年高一新生上学期入学分班质量检测数学试题
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若分式有意义,则x的取值范围是
A.B.C.D.
2、(4分)甲、乙两人各射击6次,甲所中的环数是8,5,5,a,b,c,且甲所中的环数的平均数是6,众数是8;乙所中的环数的平均数是6,方差是4.根据以上数据,对甲,乙射击成绩的正确判断是( )
A.甲射击成绩比乙稳定B.乙射击成绩比甲稳定
C.甲,乙射击成绩稳定性相同D.甲、乙射击成绩稳定性无法比较
3、(4分)若反比例函数y的图象位于第二、四象限,则k能取的最大整数为( )
A.0B.-1C.-2D.-3
4、(4分)下列汽车标识中,是中心对称图形的是( )
A.B.C.D.
5、(4分)如图,AC、BD是四边形ABCD的对角线,若E、F、G、H分别是BD、BC、AC、AD的中点,顺次连接E、F、G、H四点,得到四边形EFGH,则下列结论不正确的是( )
A.四边形EFGH一定是平行四边形B.当AB=CD时,四边形EFGH是菱形
C.当AC⊥BD时,四边形EFGH是矩形D.四边形EFGH可能是正方形
6、(4分)等腰三角形的一个角为50°,则这个等腰三角形的底角为( )
A.65°B.65°或80°C.50°或65°D.40°
7、(4分)如图,已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(10,0),点B(0,6),点P为BC边上的动点,将△OBP沿OP折叠得到△OPD,连接CD、AD.则下列结论中:①当∠BOP=45°时,四边形OBPD为正方形;②当∠BOP=30°时,△OAD的面积为15;③当P在运动过程中,CD的最小值为1﹣6;④当OD⊥AD时,BP=1.其中结论正确的有( )
A.1个B.1个C.3个D.4个
8、(4分)下列各式从左到右的变形中,是因式分解的为( )
A.x(a-b)=ax-bxB.x2-1=(x-1)(x+1)
C.x2-1+y2=(x-1)(x+1)+y2D.ax+bx+c=x(a+b)+c
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知直线经过点,则直线的图象不经过第__________象限.
10、(4分)已知函数y=(k-1)x|k|是正比例函数,则k=________
11、(4分)若,则m-n的值为_____.
12、(4分)若二次函数y=ax2﹣bx+5(a≠5)的图象与x轴交于(1,0),则b﹣a+2014的值是_____.
13、(4分)计算:﹣=__.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简(),再选取一个你喜欢的a的值代入求值.
15、(8分)如图,点,在上,,,,试判断与有怎样的数量和位置关系,并说明理由.
16、(8分)如图,四边形ABCD是正方形,点G是BC上一点,DE⊥AG于点E,BF∥DE且交AG于点F.
(1)求证:AE=BF;
(2)当∠BAG=30°,且AB=2时,求EF-FG的值.
17、(10分)为了绿化环境,某中学八年级(3班)同学都积极参加了植树活动,下面是今年3月份该班同学植树情况的扇形统计图和不完整的条形统计图:
请根据以上统计图中的信息解答下列问题.
(1)植树3株的人数为 ;
(2)扇形统计图中植树为1株的扇形圆心角的度数为 ;
(3)该班同学植树株数的中位数是
(4)小明以下方法计算出该班同学平均植树的株数是:(1+2+3+4+5)÷5=3(株),根据你所学的统计知识
判断小明的计算是否正确,若不正确,请写出正确的算式,并计算出结果
18、(10分)某校为美化校园,计划对面积为2000m2的区域进行绿化,安排甲、乙两个工程队完成,已知甲队每天完成绿化的面积是乙队每天完成绿化的面积的2倍,并且在独立完成面积为600m2区域的绿化时,甲队比乙队少用6天.
(1)甲、乙两个工程队每天能完成绿化的面积分别是多少?
(2)若学校每天需付给甲队的绿化费用为0.5万元,乙队为0.3万元,要使这次的绿化总费用不超过10万元,至少应安排甲队工作多少天?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,△ABC中,AB=AC,点B在y轴上,点A、C在反比例函数y=(k>0,x>0)的图象上,且BC∥x轴.若点C横坐标为3,△ABC的面积为,则k的值为______.
20、(4分)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R应控制的范围是____.
21、(4分)如图,直线y=kx+6与x轴、y轴分别交于点E、F.点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).若点P(x,y)是第二象限内的直线上的一个动点.当点P运动到_____(填P点的坐标)的位置时,△OPA的面积为1.
22、(4分)要使代数式有意义,则的取值范围是________.
23、(4分)如图,矩形ABCD中,,,将矩形折叠,使点B与点D重合,点A的对应点为,折痕EF的长为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系内,小正方形网格的边长为1个单位长度,的三个顶点的坐标分别为,,.
(1)画出将向上平移2个单位长度,再向左平移5个单位长度后得到的;
(2)画出将绕点按顺时针方向旋转90°得到的;
(3)在轴上存在一点,满足点到点与点的距离之和最小,请直接写出点的坐标.
25、(10分)限速安全驾,文明靠大家,根据道路管理条例规定,在某段笔直的公路L上行驶的车辆,限速60千米时,一观测点M到公路L的距离MN为30米,现测得一辆汽车从A点到B点所用时间为5秒,已知观测点M到A,B两点的距离分别为50米、34米,通过计算判断此车是否超速.
26、(12分)如图,中,.
(1)用尺规作图法在上找一点,使得点到边、的距离相等(保留作图痕迹,不用写作法);
(2)在(1)的条件下,若,,求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据分母不为0时分式有意义进行求解即可得.
【详解】
由题意得:x-2≠0,
解得:x≠2,
故选C
本题考查了分式有意义的条件,熟知分母不为0时分式有意义是解题的关键.
2、B
【解析】
要判断甲,乙射击成绩的稳定性就是要比较两人成绩的方差的大小,关键是求甲的方差.甲的这组数中的众数是8就说明a,b,c中至少有两个是8,而平均数是6,则可以得到a,b,c三个数其中一个是2,另两个数是8,求得则甲的方差,再进行比较得出结果.
【详解】
∵这组数中的众数是8,
∴a,b,c中至少有两个是8,
∵平均数是6,
∴a,b,c三个数其中一个是2,
∴ (4+1+1+4+4+16)=5,
∵5>4,
∴乙射击成绩比甲稳定.
故选:B.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
3、B
【解析】
由图像位于第二、四象限得2k+10,求得k的取值范围即可得到答案.
【详解】
∵反比例函数y图象位于第二、四象限,
∴2k+10,
∴,
∴k的最大整数解为-1,
故选:B.
此题考查反比例函数的性质,由函数图像所在的象限确定比例系数的取值范围.
4、D
【解析】
根据中心对称图形的概念判断即可.(中心对称:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合.)
【详解】
根据中心对称图形的概念把图形绕着某一点旋转180°后,只有D选项才能与原图形重合,故选D.
本题主要考查中心对称图形的概念,是基本知识点,应当熟练的掌握.
5、C
【解析】
根据三角形中位线定理、平行四边形、矩形、菱形、正方形的判定定理判断即可.
【详解】
解:∵E、F分别是BD、BC的中点,
∴EF∥CD,EF=CD,
∵H、G分别是AD、AC的中点,
∴HG∥CD,HG=CD,
∴HG∥EF,HG=EF,
∴四边形EFGH是平行四边形,A说法正确,不符合题意;
∵F、G分别是BC、AC的中点,
∴FG=AB,
∵AB=CD,
∴FG=EF,
∴当AB=CD时,四边形EFGH是菱形,B说法正确,不符合题意;
当AB⊥BC时,EH⊥EF,
∴四边形EFGH是矩形,C说法错误,符合题意;
当AB=CD,AB⊥BC时,四边形EFGH是正方形,说法正确,不符合题意;
故选:C.
此题考查中点四边形、三角形中位线定理,掌握平行四边形、矩形、菱形、正方形的判定定理是解题的关键.
6、C
【解析】
已知给出了一个内角是50°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还要用内角和定理去验证每种情况是不是都成立.
【详解】
当50°是等腰三角形的顶角时,则底角为(180°﹣50°)×12=65°;
当50°是底角时也可以.
故选C.
本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.
7、D
【解析】
①由矩形的性质得到,根据折叠的性质得到,,,推出四边形是矩形,根据正方形的判定定理即可得到四边形为正方形;故①正确;
②过作于,得到,,根据直角三角形的性质得到,根据三角形的面积公式得到的面积为,故②正确;
③连接,于是得到,即当时,取最小值,根据勾股定理得到的最小值为;故③正确;
④根据已知条件推出,,三点共线,根据平行线的性质得到,等量代换得到,求得,根据勾股定理得到,故④正确.
【详解】
解:①四边形是矩形,
,
将沿折叠得到,
,,,
,
,
,
,
四边形是矩形,
,
四边形为正方形;故①正确;
②过作于,
点,点,
,,
,,
,
,
的面积为,故②正确;
③连接,
则,
即当时,取最小值,
,,
,
,
即的最小值为;故③正确;
④,
,
,
,
,,三点共线,
,
,
,
,
,
,
,
,故④正确;
故选:.
本题考查了正方形的判定和性质,矩形的判定和性质,折叠的性质,勾股定理,三角形的面积的计算,正确的识别图形是解题的关键.
8、B
【解析】
根据因式分解的的定义即可完成本题。
【详解】
解:A选项没有写成因式积的形式,故A错;
B选项写成因式积的形式,故B正确;
C选项没有写成因式积的形式,故C错;
D选项没有写成因式积的形式,故D错;
故答案为B.
本题考查了因式分解,准确的理解因式分解的定义是解答本题的关键。
二、填空题(本大题共5个小题,每小题4分,共20分)
9、四
【解析】
根据题意求出b,再求出直线即可.
【详解】
∵直线经过点,
∴b=3
∴
∴不经过第四象限.
本题考查的是一次函数,熟练掌握一次函数的图像是解题的关键.
10、-1
【解析】
试题解析:∵根据正比例函数的定义,
可得:k-1≠0,|k|=1,
∴k=-1.
11、4
【解析】
根据二次根式与平方的非负性即可求解.
【详解】
依题意得m-3=0,n+1=0,解得m=3,n=-1,
∴m-n=4
此题主要考查二次根式与平方的非负性,解题的关键是熟知二次根式与平方的非负性.
12、1.
【解析】
把(1,0)代入y=ax2-bx+5得a-b+5=0,然后利用整体代入的方法计算b-a+2014的值.
【详解】
解:把(1,0)代入y=ax2-bx+5得a-b+5=0,
所以b-a=5,
所以b-a+2014=5+2014=1.
故答案为1.
本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.
13、
【解析】
分析:先将二次根式化为最简,然后合并同类二次根式即可.
详解:原式=3-2
=.
故答案为.
点睛:本题考查了二次根式的加减运算,解答本题得关键是掌握二次根式的化简及同类二次根式的合并.
三、解答题(本大题共5个小题,共48分)
14、a2+1,求值不唯一,使a≠±1皆可.
【解析】
先通分约分进行化简,然后再代入a的值进行计算,但a不能取±1.
15、详见解析
【解析】
根据平行线的性质得到,由得到,推出,根据全等三角形的性质得到,,由平行线的判定即可得到结论.
【详解】
解:与平行且相等,理由:
因为,所以.
因为,所以.
又因为,
所以.
所以,.
所以.
本题考查平行线的判定与性质,全等三角形的判定与性质.熟练掌握性质定理和判定定理是解题的关键.注意数形结合思想的应用.
16、(1)证明见解析;(2)EF-FG=-1.
【解析】
分析:(1)首先根据角与角之间的等量代换得到∠ABF=∠DAE,结合AB=AD,∠AED=∠BFA,利用AAS证明△ABF≌△DAE,即可得到AE=BF;
(2)首先求出BF和AE的长度,然后在Rt△BFG中求出BG=2FG,利用勾股定理得到BG2=FG2+BF2,进而求出FG的长,于是可得EF﹣FG的值.
详解:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAF+∠DAE=∠BAD=90°.
又∵DE⊥AG,BF∥DE,∴∠AED=∠BFA=90°.
∵∠BAF+∠ABF=90°,∴∠ABF=∠DAE.在△ABF和△DAE中,,∴△ABF≌△DAE(AAS),∴AE=BF;
(2)∵∠BAG=30°,AB=2,∠BEA=90°,∴BF=AB=1,AF=,∴EF=AF﹣AE=AF﹣BF=﹣1.
∵BF⊥AG,∠ABG=90°,∠BAG=30°,∴∠FBC=30°,∴BG=2FG,由BG2=FG2+BF2,∴4FG2=FG2+1,∴FG=,∴EF﹣FG=﹣1﹣=﹣1.
点睛:本题主要考查了正方形的性质、全等三角形的判定与性质以及勾股定理等知识,解答本题的关键是根据AAS证明△ABF≌△DAE,此题难度一般.
17、(1)12;(2)72°;(3)2;(1)小明的计算不正确,2.1.
【解析】
(1)根据植树2株的人数及其所占的百分比计算出总人数,然后分别减去植树1株,2株,1株,5株的人数即可得到植树3株的人数;
(2)用360°乘以植树1株的人数所占的百分比即可得;
(3)根据中位数的定义可先计算植树的总人数,然后写出即可;
(1)根据平均数的定义判断计算即可.
【详解】
解:(1)植树3株的人数为:20÷10%﹣10﹣20﹣6﹣2=12;
(2)扇形统计图中植树为1株的扇形圆心角的度数为:360°×=72°;
(3)植树的总人数为:20÷10%=50,
∴该班同学植树株数的中位数是2;
(1)小明的计算不正确,
正确的计算为: =2.1.
本题主要考查了扇形统计图和条形统计图、平均数、中位数的知识,根据题意读懂图形并正确计算是解题的关键.
18、(1)甲工程队每天能完成绿化的面积为3m1,乙工程队每天能完成绿化的面积为2m1.(1)至少应安排甲队工作10天.
【解析】
(1)设乙工程队每天能完成绿化的面积为xm1,则甲工程队每天能完成绿化的面积为1xm1,根据“在独立完成面积为600m1区域的绿化时,甲队比乙队少用6天”,即可得出关于x的分式方程,解之并检验后,即可得出结论;
(1)设安排甲工程队工作y天,则乙工程队工作天,根据总费用=需付给甲队总费用+需付给乙队总费用结合这次的绿化总费用不超过10万元,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,取其内的最小正整数即可.
【详解】
(1)设乙工程队每天能完成绿化的面积为xm1,则甲工程队每天能完成绿化的面积为1xm1,
根据题意得:,
解得:x=2.
经检验,x=2是原方程的解,
∴1x=3.
答:甲工程队每天能完成绿化的面积为3m1,乙工程队每天能完成绿化的面积为2m1.
(1)设安排甲工程队工作y天,则乙工程队工作天,
根据题意得:0.5y+0.3(40﹣1y)≤10,
解得:y≥10.
答:至少应安排甲队工作10天.
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,列出关于x的分式方程;(1)根据总费用=需付给甲队总费用+需付给乙队总费用结合这次的绿化总费用不超过10万元,列出关于y的一元一次不等式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
先利用面积求出△ABC的高h,然后设出C点的坐标,进而可写出点A的坐标,再根据点A,C都在反比例函数图象上,建立方程求解即可.
【详解】
设△ABC的高为h,
∵S△ABC=BC•h=3h=,
∴h=.
∵ ,
∴点A的横坐标为 .
设点C(3,m),则点A(,m+),
∵点A、C在反比例函数y=(k>0,x>0)的图象上,
则k=3m=(m+),
解得 ,
则k=3m=,
故答案为:.
本题主要考查反比例函数与几何综合,找到A,C坐标之间的关系并能够利用方程的思想是解题的关键.
20、R≥3.1
【解析】
解:设电流I与电阻R的函数关系式为I=,
∵图象经过的点(9,4),
∴k=31,
∴I=,
k=31>0,在每一个象限内,I随R的增大而减小,
∴当I取得最大值10时,R取得最小值=3.1,
∴R≥3.1,
故答案为R≥3.1.
21、(﹣4,3).
【解析】
求出直线EF的解析式,由三角形的面积公式构建方程即可解决问题.
【详解】
解:∵点E(﹣8,0)在直线y=kx+6上,
∴﹣8k+6=0,
∴k=,
∴y=x+6,
∴P(x, x+6),
由题意:×6×(x+6)=1,
∴x=﹣4,
∴P(﹣4,3),
故答案为(﹣4,3).
本题考查一次函数图象上的点的坐标特征,三角形的面积等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.
22、且
【解析】
分式的分母不等于零时分式有意义,且还需满足被开方数大于等于零的条件,根据要求列式计算即可.
【详解】
∵代数式有意义,
∴,且,
∴且,
故答案为:且.
此题考查分式有意义的条件,二次根式被开方数的取值范围的确定,正确理解题意列出不等式是解题的关键.
23、
【解析】
过点F作FH⊥AD于H,先利用矩形的性质及轴对称的性质证明DE=DF=BF,在Rt△DCF中通过勾股定理求出DF的长,再求出HE的长,再在Rt△HFE中利用勾股定理即可求出EF的长.
【详解】
解:如图,过点F作FH⊥AD于H,
∵四边形ABCD为矩形,
∴BC∥AD,∠C=90°,DC=AB=4,四边形DCFH为矩形,
∴∠BFE=∠DEF,
由折叠可知,∠BFE=∠DFE,BF=DF,
∴∠DEF=∠DFE,
∴DE=DF=BF,
在Rt△DCF中
设DF=x,则CF=BC-BF=6-x,
∵DC2+CF2=DF2,
∴42+(6-x)2=x2,
解得,x=,
∴DE=DF=BF=,
∴CF=BC-BF=6-=,
∵四边形DCFH为矩形,
∴HF=CD=4,DH=CF=,
∴HE=DE-DH=,
∴在Rt△HFE中,
故答案为
本题考查了矩形的性质,轴对称的性质,勾股定理等,解题关键是能够灵活运用矩形的性质及轴对称的性质.
二、解答题(本大题共3个小题,共30分)
24、(1)答案见解析;(2)答案见解析;(3).
【解析】
(1)先分别将A、B、C三点向上平移2个单位长度,再向左平移5个单位长度得到,然后连接、、即可;
(2)根据题意,先将边OC和OA绕点顺时针方向旋转90°得到、,然后连接即可;
(3)连接交x轴于点P,根据两点之间线段最短即可得出此时点到点与点的距离之和最小,然后利用待定系数法求出直线的解析式,从而求出点P 的坐标.
【详解】
解:(1)先分别将A、B、C三点向上平移2个单位长度,再向左平移5个单位长度得到,然后连接、、,如图所示,即为所求;
(2)先将边OC和OA绕点顺时针方向旋转90°得到、,然后连接,如图所示,即为所求;
(3)连接交x轴于点P,根据两点之间线段最短,即可得出此时点到点与点的距离之和最小,
由平面直角坐标系可知:点A的坐标为(4,3),点的坐标为(3,-4)
设直线的解析式为y=kx+b
将A、的坐标代入,得
解得:
∴直线的解析式为y=7x-25
将y=0代入,得
∴点P的坐标为.
此题考查的是图形的平移、旋转、两点之间线段最短的应用和求一次函数的解析式,掌握图形的平移、旋转的画法、两点之间线段最短和利用待定系数法求一次函数的解析式是解决此题的关键.
25、此车没有超速
【解析】
在Rt△AMN中根据勾股定理求出AN,在Rt△BMN中根据勾股定理求出BN,由AN+NB求出AB的长,根据路程除以时间得到速度,即可做出判断.
【详解】
解:在中,,,
米,
在中,,,
米,
米,
汽车从A到B的平均速度为米秒,
米秒千米时千米时,
此车没有超速.
本题考核知识点:勾股定理的应用. 解题关键点:把问题转化为在直角三角形中的问题.
26、(1)见解析;(2)
【解析】
(1)根据题意作∠CAB的角平分线与BC的交点即为所求;
(2)根据含30°的直角三角形的性质及勾股定理即可求解.
【详解】
(1)
(2)由(1)可知为的角平分线
∴
∴
∴
∴
在中,由勾股定理得:
即
解得:∴
此题主要考查直角三角形的性质,解题的关键是熟知勾股定理的应用.
题号
一
二
三
四
五
总分
得分
四川省简阳中学2024-2025学年高一新生上学期入学分班质量检测数学试题: 这是一份四川省简阳中学2024-2025学年高一新生上学期入学分班质量检测数学试题,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
四川省蒲江县寿安中学2024-2025学年高一新生上学期入学分班质量检测数学试题: 这是一份四川省蒲江县寿安中学2024-2025学年高一新生上学期入学分班质量检测数学试题,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
长郡中学2024-2025学年高一上学期综合能力检测(入学分班考试)数学试卷(解析版): 这是一份长郡中学2024-2025学年高一上学期综合能力检测(入学分班考试)数学试卷(解析版),共28页。