2024-2025学年深圳市外国语学校数学九年级第一学期开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知一次函数的图象如图所示,当时,的取值范围是( )
A.B.C.D.
2、(4分)如图,在△ABC中,∠C=90°,E是CA延长线上一点,F是CB上一点,AE=12,BF=8,点P,Q,D分别是AF,BE,AB的中点,则PQ的长为( )
A.2B.4C.6D.3
3、(4分)在△ABC中,AB=6,AC=8,BC=10,则该三角形为( )
A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形
4、(4分)某市五月份连续五天的日最高气温分别为33、30、31、31、29(单位:ºC),这组数据的众数是( )
A.29B.30C.31D.33
5、(4分)一名考生步行前往考场,10分钟走了总路程的,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了( )
A.20分钟 B.22分钟 C.24分钟 D.26分钟
6、(4分)下列关系不是函数关系的是( )
A.汽车在匀速行驶过程中,油箱的余油量y(升)是行驶时间t(小时)的函数
B.改变正实数x,它的平方根y随之改变,y是x的函数
C.电压一定时,通过某电阻的电流强度I(单位:安)是电阻R(单位:欧姆)的函数
D.垂直向上抛一个小球,小球离地的高度h(单位:米)是时间t(单位:秒)的函数
7、(4分)如图,将矩形ABCD的四个角向内折叠铺平,恰好拼成一个无缝隙无重叠的矩形EFGH,若EH=5,EF=12,则矩形ABCD的面积是( )
A.13 B. C.60 D.120
8、(4分)已知点(-2,y1),(-1,y2),(1,y3)都在直线y=-3x+b上,则y1,y2,y3的值的大小关系是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在2017年的理化生实验考试中某校6名学生的实验成绩统计如图,这组数据的众数是___分.
10、(4分)如图,OP平分∠AOB,PE⊥AO于点E,PF⊥BO于点F,且PE=6cm,则点P到OB的距离是___cm.
11、(4分)如图,将平行四边形ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=6,AB=12,则AE的长为_______.
12、(4分)化简________.
13、(4分)某正比例函数图象经过点(1,2),则该函数图象的解析式为___________
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,的对角线相交于点分别为的中点.求证:.
15、(8分)已知,如图,点D是△ABC的边AB的中点,四边形BCED是平行四边形.
(1)求证:四边形ADCE是平行四边形;
(2)在△ABC中,若AC=BC,则四边形ADCE是 ;(只写结论,不需证明)
(3)在(2)的条件下,当AC⊥BC时,求证:四边形ADCE是正方形.
16、(8分)小明、小亮都是射箭爱好者,他们在相同的条件下各射箭5次,每次射箭的成绩情况如表:
(1)请你根据表中的数据填写下表:
(2)从平均数和方差相结合看,谁的成绩好些?
17、(10分)平面直角坐标系中,点O为坐标原点,菱形OABC中的顶点B在x轴的正半轴上,点A在反比例函数y=(x>0)的图象上,点C的坐标为(3,﹣4).
(1)点A的坐标为_____;
(2)若将菱形OABC沿y轴正方向平移,使其某个顶点落在反比例函数y= (x>0)的图象上,则该菱形向上平移的距离为_____.
18、(10分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF
(1)填空∠B=_______°;
(2)求证:四边形AECF是矩形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某学习小组有5人,在一次数学测验中的成绩分别是102, 106, 100, 105, 102,则他们成绩的平均数_______________
20、(4分)若<0,则代数式可化简为_____.
21、(4分)如图,在矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的点E处,折痕的一端点G在边BC上,BG=1.
如图1,当折痕的另一端点F在AB边上时,EFG的面积为_____;
如图2,当折痕的另一端点F在AD边上时,折痕GF的长为_____.
22、(4分)一组数据:,,0,1,2,则这组数据的方差为____.
23、(4分)分解因式:5x3﹣10x2=_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组:.并判断这个数是否为该不等式组的解.
25、(10分)在平面直角坐标系中,△ABC的三个顶点坐标分别为:A(1,1),B(3,2),C(1,4).
(1)将△ABC先向下平移4个单位,再向右平移1个单位,画出第二次平移后的△A1B1C1.若将△A1B1C1看成是△ABC经过一次平移得到的,则平移距离是________.
(2)以原点为对称中心,画出与△ABC成中心对称的△A2B2C2.
26、(12分)先化简,再求值:,其中x=1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题解析:从图像可以看出当自变量时,y的取值范围在x轴的下方,故
故选C.
2、A
【解析】
根据三角形中位线定理得到PD、DQ,PD∥BC,根据平行线的性质得到∠PDA=∠CBA,同理得到∠PDQ=90°,根据勾股定理计算,得到答案.
【详解】
∵∠C=90°,
∴∠CAB+∠CBA=90°,
∵点P,D分别是AF,AB的中点,
∴PD=BF=6,PD∥BC,
∴∠PDA=∠CBA,
同理,QD=AE=6,∠QDB=∠CAB,
∴∠PDA+∠QDB=90°,即∠PDQ=90°,
∴PQ=,
故选A.
本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
3、B
【解析】
在△ABC中,AB=6,AC=8,BC=10,推断出62+82=102,由勾股定理的逆定理得此三角形是直角三角形,故选B.
4、C
【解析】
根据众数的概念:一组数据中出现次数最多的数据为这组数据的众数即可得出答案.
【详解】
根据众数的概念可知,31出现了2次,次数最多,
∴这组数据的众数为31,
故选:C.
本题主要考查众数,掌握众数的概念是解题的关键.
5、C
【解析】
试题解析:他改乘出租车赶往考场的速度是÷2=,所以到考场的时间是10+÷=16分钟,
∵10分钟走了总路程的,
∴步行的速度=÷10=,
∴步行到达考场的时间是1÷=40,则他到达考场所花的时间比一直步行提前了40-16=24分钟.
故选C.
考点:函数的图象.
6、B
【解析】
利用函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量,进而得出答案.
【详解】
解:A、汽车在匀速行驶过程中,油箱的余油量y(升)是行驶时间t(小时)的函数,故此选项不合题意;
B、y表示一个正数x的平方根,y与x之间的关系,两个变量之间的关系不能看成函数关系,故此选项符合题意;
C、电压一定时,通过某电阻的电流强度I(单位:安)是电阻R(单位:欧姆)的函数,故本选项不合题意;
D、垂直向上抛一个小球,小球离地的高度h(单位:米)是时间t(单位:秒)的函数,故本选项不合题意.
故选:B.
此题主要考查了函数的定义,正确把握函数定义是解题关键.对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即一一对应.
7、D
【解析】
由折叠图形的性质求得∠HEF=90°,则∠HEF=∠EFG=∠FGH=∠GHE=90∘ , 得到四边形EHFG是矩形,再由折叠的性质得矩形ABCD的面积等于矩形EFGH面积的2倍,根据已知数据即可求出矩形ABCD的面积.
【详解】
如图,
根据折叠的性质可得∠AEH=∠MEH,∠BEF=∠FEM,
∴∠AEH+∠BEF=∠MEH+∠FEM,
∴∠HEF=90°,
同理得∠HEF=∠EFG=∠FGH=∠GHE=90∘
∴四边形EHFG是矩形,
由折叠的性质得:S矩形ABCD=2S矩形HEFG=2×EH×EF=2×5×12=120;
故答案为:D.
本题考查矩形的折叠问题,解题关键在于能够得到四边形EHFG是矩形
8、B
【解析】
根据一次函数的增减性进行判断.
【详解】
解:对y=-3x+b,因为k=-3<0,所以y随x的增大而减小,因为―2<―1<1,所以,故选B.
本题考查了一次函数的增减性,熟练掌握一次函数的性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据图象写出这组数据,再根据一组数据中出现次数最多的数据叫做众数求解.
【详解】
解:由图可得,
这组数据分别是:24,24,1,1,1,30,
∵1出现的次数最多,
∴这组数据的众数是1.
故答案为:1.
本题考查折线统计图和众数,解答本题的关键是明确众数的定义,利用数形结合的思想解答.
10、1
【解析】
根据角平分线上的点到角两边的距离相等可得点P到OB的距离等于点P到OA的距离,即点P到OB的距离等于PE的长度.
【详解】
解: ∵OP平分∠AOB,PE⊥AO于点E,PF⊥BO于点F,
∴PE=PF=1cm
故答案为:1.
本题考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题关键.
11、8.4.
【解析】
过点C作CG⊥AB的延长线于点G,设AE=x,由于▱ABCD沿EF对折可得出AE=CE=x, 再求出∠BCG=30°,BG=BC=3, 由勾股定理得到,则EG=EB+BG=12-x+3=15-x,在△CEG中,利用勾股定理列出方程即可求出x的值.
【详解】
解:过点C作CG⊥AB的延长线于点G,
∵▱ABCD沿EF对折,
∴AE=CE
设AE=x,则CE=x,EB=12-x,
∵AD=6,∠A=60°,
∴BC=6, ∠CBG=60°,
∴∠BCG=30°,
∴BG=BC=3,
在△BCG中,由勾股定理可得:
∴EG=EB+BG=12-x+3=15-x
在△CEG中,由勾股定理可得:
解得:
故答案为:8.4
本题考查平行四边形的综合问题,解题的关键是证明△D′CF≌△ECB,然后利用勾股定理列出方程,本题属于中等题型.
12、
【解析】
根据二次根式有意义 条件求解即可.
【详解】
根据题意知:2-a≥0,a-2≥0,
解得,a=2,
∴3×2+0+0=6.
故答案为:6.
此题主要考查了二次根式有意义的条件的应用,注意二次根式有意义的条件是被开方数是非负数.
13、
【解析】
设正比例函数的解析式为y=kx,然后把点(1,2)代入y=kx中求出k的值即可.
【详解】
解:设正比例函数的解析式为y=kx,
把点(1,2)代入得,
2=k×1,
解得k=2,
∴该函数图象的解析式为:;
故答案为:.
本题主要考查了待定系数法求正比例函数解析式,掌握待定系数法求正比例函数解析式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
利用平行四边形得到,由E、F分别为OC、OA的中点得到OE=OF,由此证明△OBE≌△ODF,得到BE=DF.
【详解】
∵四边形是平行四边形,
∴.
∵分别是的中点,
∴,
∴.
在和中,
∴,
∴.
此题考查平行四边形的对角线相等的性质,线段中点的性质,利用SAS证明三角形全等,将所证明的等量线段放在全等三角形中证明三角形全等的思路很关键,解题中注意积累方法.
15、 (1)证明见解析;(2)矩形;(3)证明见解析.
【解析】
(1)证明是平行四边形的方法有很多,此题用一组对边平行且相等较为简单.
(2)根据矩形的判定解答即可.
(3)根据正方形的判定解答即可.
【详解】
证明:(1)∵四边形BCED是平行四边形,
∴BD∥CE,BD=CE;
∵D是AB的中点,
∴AD=BD,
∴AD=CE;
又∵BD∥CE,
∴四边形ADCE是平行四边形.
(2)在△ABC中,若AC=BC,则四边形ADCE是矩形,
故答案为矩形;
(3)∵AC⊥BC,
∴∠ACB=90°;
∵在Rt△ABC中,D是AB的中点,
∴CD=AD=AB;
∵在△ABC中,AC=BC,D是AB的中点,
∴CD⊥AB,
∴∠ADC=90°;
∴平行四边形ADCE是正方形.
此题考查正方形的判定,能够运用已学知识证明四边形是平行四边形,另外要熟练掌握正方形的性质及判定.
16、(1)填表见解析;(2)见解析.
【解析】
分析:(1)根据平均数、众数和方差的定义进行填表即可;
(2)根据两人的成绩的平均数相同,再根据方差得出乙的成绩比甲稳定,即可求出答案.
详解:(1)填表如下:
(2)小明和小亮射箭的平均数都是7,但小明比小亮的方差要小,说明小明的成绩较为稳定,所以小明的成绩比小亮的成绩要好些.
点睛:本题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
17、(1)(3,4)
(2)2或8
【解析】
(1)根据菱形的对称性,得A(3,4)
(2)则反比例函数为 则B(6,0),若点B向上平移到反比例函数上.则B(6,2),即向上平移2个单位;若点C在反比例函数上,则C(3,4),即向上平移8个单位.故该菱形向上平移的距离为2或8.
18、(1)60;(2)见解析
【解析】
分析:(1)根据菱形的性质可得AB=BC,然后根据AB=AC,可得△ABC为等边三角形,继而可得出∠B=60°;
(2)根据△ABC为等边三角形,同理得出△ACD为等边三角形,然后根据E、F分别是BC、AD的中点,可得AE⊥BC,CF⊥AD,然后根据AF∥CE,即可判定四边形AECF为矩形.
详解:(1)(1)因为四边形ABCD为菱形,
∴AB=BC,
∵AC=AB,
∴△ABC为等边三角形,
∴∠B=60°,;
(2)证明:
∵四边形ABCD是菱形,
∴AD=BC,AD∥BC,
∵E.F分别是BC.AD的中点,
∴CE=BC,AF=AD,
∴AF=CE,
∴四边形AECF是平行四边形,
∵AB=AC,E是BC的中点,
∴AE⊥BC,即∠AEC=90°,
∴ 四边形AECF是矩形.
点睛:本题考查了菱形的性质,等边三角形的判定与性质,矩形的判定,解答本题的关键是掌握菱形的四条边都相等的性质,注意掌握矩形的判定:有一个角是直角的平行四边形是矩形.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、103
【解析】
首先根据平均数的计算公式表示出他们的平均成绩,接下来对其进行计算即可.注意:加权平均数与算术平均数的区别.
【详解】
由题意得,某学习小组成绩的平均数是(102+106+100+105+102)÷5=103,
故答案为:103.
此题考查平均数,解答本题的关键是熟练掌握平均数的计算公式.
20、
【解析】
二次根式有意义,就隐含条件b>1,由ab<1,先判断出a、b的符号,再进行化简即可.
【详解】
若ab<1,且代数式有意义;
故有b>1,a<1;
则代数式=|a|=-a.
故答案为:-a.
本题主要考查二次根式的化简方法与运用:当a>1时,=a;当a<1时,=-a;当a=1时,=1.
21、25 4
【解析】
(1)先利用翻折变换的性质以及勾股定理求出AE的长,进而利用勾股定理求出AF和EF的长,利用三角形的面积公式即可得出△EFG的面积;
(2)首先证明四边形BGEF是平行四边形,再利用BG=EG,得出四边形BGEF是菱形,再利用菱形性质求出FG的长.
【详解】
解:(1)如图1过G作GH⊥AD
在Rt△GHE中,GE=BG=1,GH=8
所以,EH==6,
设AF=x,则
则
∴
解得:x=3
∴AF=3,BF=EF=5
故△EFG的面积为:×5×1=25;
(2)如图2,过F作FK⊥BG于K
∵四边形ABCD是矩形
∴,
∴四边形BGEF是平行四边形
由对称性知,BG=EG
∴四边形BGEF是菱形
∴BG=BF=1,AB=8,AF=6
∴KG=4
∴FG=.
本题主要考查了翻折,勾股定理,矩形的性质,平行四边形和菱形的性质与判定,熟练掌握相关几何证明方法是解决本题的关键.
22、2
【解析】
先求出这组数据的平均数,再根据方差的公式计算即可.
【详解】
解:这组数据的平均数是:(-1-2+0+1+2)÷5=0,
则这组数据的方差为:.
本题考查方差的定义:一般地设n个数据, x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
23、5x2(x-2)
【解析】
5x3-10x2=2x2(x-2)
二、解答题(本大题共3个小题,共30分)
24、, 不是不等式组的解.
【解析】
先求出每个不等式的解集,再得出不等式组的解集,由x的取值范围即可得出结论.
【详解】
解.
解不等式(1)得:,
解不等式(2)得:,
所以不等式是。
∵>1
∴不是不等式组的解。
本题考查的是解一元一次不等式组及估算无理数的大小,根据题意求出x的取值范围是解答此题的关键.
25、(1),见解析;(2)见解析.
【解析】
(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可,再利用勾股定理列式计算即可得解;
(2)根据网格结构找出点A、B、C以原点为对称中心的对称点A2、B2、C2的位置,然后顺次连接即可.
【详解】
解:(1)△A1B1C1如图所示,
平移距离为:=;
故答案为:.
(2)如(1)图中所作.
本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.
26、,
【解析】
根据分式的减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
【详解】
解:-
=
=
=
=
当x=1时,原式=
本题考查分式的化简求值,解答本题的关键是明确分式的基本性质和减法法则.
题号
一
二
三
四
五
总分
得分
批阅人
射箭次数
第1次
第2次
第3次
第4次
第5次
小明成绩(环)
6
7
7
7
8
小亮成绩(环)
4
8
8
6
9
姓名
平均数(环)
众数(环)
方差
小明
7
0.4
小亮
8
2024-2025学年山东省单县启智学校九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年山东省单县启智学校九年级数学第一学期开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省深圳外国语学校九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年广东省深圳外国语学校九年级数学第一学期开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省深圳市桃源中学九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年广东省深圳市桃源中学九年级数学第一学期开学达标检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。