2024-2025学年广东深深圳市百合外国语学校数学九上开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列运算正确的是( )
A.B.C.D.
2、(4分)若,则变形正确的是( )
A.B.C.D.
3、(4分)如图,在▱ABCD中,AD=8,点E,F分别是AB,AC的中点,则EF等于( )
A.2B.3C.4D.5
4、(4分)如图,已知矩形中,与相交于,平分交于,,则的度数为( )
A.B.C.D.
5、(4分)下列调查中,不适宜用普查的是()
A.了解全班同学每周体育锻炼的时间;B.了解全市中小学生每天的零花钱;
C.学校招聘教师,对应聘人员面试;D.旅客上飞机前的安检.
6、(4分)用换元法解方程时,如果设=y,则原方程可化为( )
A.y+=B.2y2﹣5y+2=0C.6y2+5y+2=0D.3y+=
7、(4分)如果一个多边形的内角和等于它的外角和,那么这个多边形是( )
A.六边形B.五边形C.四边形D.三角形
8、(4分)在平面直角坐标系中,若点在第一象限内,则点所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系中,点在第________象限.
10、(4分)若分式的值为0,则的值为____.
11、(4分)在中,对角线,相交于点,若,,,则的周长为_________.
12、(4分)小明利用公式计算5个数据的方差,则这5个数据的标准差的值是_____.
13、(4分)已知点(m-1,y1),(m-3,y2)是反比例函数y=(m<0)图象上的两点,则y1____y2 (填“>”“=”或“<”).
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形是面积为的平行四边形,其中.
(1)如图①,点为边上任意一点,则的面积和的面积之和与的面积之间的数量关系是__________;
(2)如图②,设交于点,则的面积和的面积之和与的面积之间的数量关系是___________;
(3)如图③,点为内任意一点时,试猜想的面积和的面积之和与的面积之间的数量关系,并加以证明;
(4)如图④,已知点为内任意一点,的面积为,的面积为,连接,求的面积.
15、(8分)化简或解方程
(1) ;
(2)
16、(8分)小东到学校参加毕业晚会演出,到学校时发现演出道具还放在家中,此时距毕业晚会开始还有25分钟,于是立即步行回家.同时,他父亲从家里出发骑自行车以他3倍的速度给他送道具,两人在途中相遇,相遇后,小东父亲立即骑自行车以原来的速度载小东返回学校.图中线段AB、OB表示相遇前(含相遇)父亲送道具、小东取道具过程中,各自离学校的路程S(米)与所用时间t分)之间的函数关系,结合图象解答下列问题.
(1)求点B坐标;
(2)求AB直线的解析式;
(3)小东能否在毕业晚会开始前到达学校?
17、(10分)解下列方程:
(1)
(2)
18、(10分)如图,甲乙两船从港口A同时出发,甲船以16海里/时的速度向北偏东航行,乙船向南偏东航行,3小时后,甲船到达C岛,乙船到达B岛,若C、B两岛相距102海里,问乙船的航速是多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若关于x的分式方程无解,则m的值为__________.
20、(4分)某商品经过两次连续的降价,由原来的每件250元降为每件160元,则该商品平均每次降价的百分率为____________.
21、(4分)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=10,将△ABC沿CB方向向右平移得到△DEF.若四边形ABED的面积为20,则平移距离为___________.
22、(4分)若分式方程有增根,则 a 的值是__________________.
23、(4分)如图,在矩形ABCD中,AB=6,对角线AC、BD相交于点O,AE垂直平分BO于点E,则AD的长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:AC是平行四边形ABCD的对角线,且BE⊥AC,DF⊥AC,连接DE、BF.求证:四边形BFDE是平行四边形.
25、(10分)(1)已知,求的值;
(2)解方程:.
26、(12分)在直角坐标系中,直线l1经过(2,3)和(-1,-3):直线l2经过原点O,且与直线l1交于点P(-2,a).
(1)求a的值;
(2)(-2,a)可看成怎样的二元一次方程组的解?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据二次根式的计算法则对各个选项一一进行计算即可判断出答案.
【详解】
A. 不是同类二次根式,不能合并,故A错误;
B. ,故B错误;
C. ,故C错误;
D. 故D正确.
故选D.
本题考查了二次根式的运算.熟练应用二次根式的计算法则进行正确计算是解题的关键.
2、D
【解析】
根据不等式的性质即可判断.
【详解】
若,
则x+2<y+2,故A错误;
<,故B错误;
x-2<y-2,故C错误;
,故D正确;
故选D.
此题主要考查不等式的性质,解题的关键是熟知不等式的性质及应用.
3、C
【解析】
利用平行四边形性质得到BC长度,然后再利用中位线定理得到EF
【详解】
在▱ABCD中,AD=8,得到BC=8,因为点E,F分别是AB,AC的中点,所以EF为△ABC的中位线,EF=,故选C
本题主要考查平行四边形性质与三角形中位线定理,属于简单题
4、B
【解析】
因为DE平分∠ADC,可证得△ECD为等腰直角三角形,得EC=CD, 因为∠BDE=15°,可求得∠CDO=60°,易证△CDO为等边三角形,等量代换可得CE=CO,即∠COE=∠CEO,而∠ECO=30°,利用三角形内角和为180°,即可求得∠COE=75°.
【详解】
解:∵四边形ABCD为矩形,且DE平分∠ADC,
∴∠CDE=∠CED=45,即△ECD为等腰直角三角形,
∴CE=CD,
∵∠BDE=15°,
∴∠CDO=45°+15°=60°,
∵OD=OC,
∴△CDO为等边三角形,即OC=OD=CD,
∴CE=OC,
∴∠COE=∠CEO,
而∠OCE=90°-60°=30°,
∴∠COE=∠CEO==75°.
故选B.
本题考查三角形与矩形的综合,难度一般,熟练掌握矩形的性质是顺利解题的关键.
5、B
【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
A、了解全班同学每周体育锻炼的时间,数量不大,宜用全面调查,故A选项错误;
B、了解全市中小学生每天的零花钱,数量大,不宜用全面调查,故B选项正确;
C、学校招聘教师,对应聘人员面试,必须全面调查,故C选项错误;
D、旅客上飞机前的安检,必用全面调查,故D选项不正确.
故选B.
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
6、D
【解析】
因为已知设=y,易得=,即可转化为关于y的方程.
【详解】
设=y,则
则原方程变形为:3y+=,
故选:D.
本题主要考查了解分式方程中的换元法,换元的关键是仔细观察题目,看看可以把哪一部分看作一个整体,发现他们之间的联系,从而成功换元.
7、C
【解析】
根据多边形内角和公式:(n-2)×180°和任意多边形外角和为定值360 °列方程求解即可.
【详解】
解:设多边形的边数为n,根据题意列方程得,
(n﹣2)•180°=360°,
n﹣2=2,
n=1.
故选:C.
本题考查的知识点多边形的内角和与外交和,熟记多边形内角和公式是解题的关键.
8、C
【解析】
根据各象限内点的坐标特征解答即可.
【详解】
解:由点A(a,b)在第一象限内,得
a>0,b>0,
由不等式的性质,得
-a<0,-b<0,
点B(-a,-b)所在的象限是第三象限,
故选:C.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
二、填空题(本大题共5个小题,每小题4分,共20分)
9、二
【解析】
根据各象限内点的坐标特征解答.
【详解】
解:点位于第二象限.
故答案为:二.
本题考查了各象限内点的坐标的符号特征以,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
10、2
【解析】
先进行因式分解和约分,然后求值确定a
【详解】
原式=
∵值为0
∴a-2=0,解得:a=2
故答案为:2
本题考查解分式方程,需要注意,此题a不能为-2,-2为分式方程的增根,不成立
11、21
【解析】
由在平行四边形ABCD中,AC=14,BD=8,AB=10,利用平行四边形的性质,即可求得OA与OB的长,继而求得△OAB的周长.
【详解】
∵在平行四边形ABCD中,AC=14,BD=8,AB=10,
∴OA=AC=7,OB=BD=4,
∴△OAB的周长为:AB+OB+OA=10+7+4=21.
故答案为:21.
本题考查平行四边形的性质,熟练掌握平行四边形的性质和计算法则是解题关键.
12、
【解析】
先根据平均数的定义求出,再代入公式求出方差,然后求出方差的算术平方根即标准差的值.
【详解】
解:根据题意知,,
则,
.
故答案为.
本题考查了标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.也考查了平均数与方差,解题的关键是熟练掌握基本知识,属于中考常考题型.
13、>
【解析】
分析:m<0,在每一个象限内,y随x的增大而增大.
详解:因为m<0,所以m-3<m-1<0,这两个点都在第二象限内,
所以y2<y1,即y1>y2.
故答案为>.
点睛:对于反比例函数图象上的几个点,如果知道横坐标去比较纵坐标的大小或知道纵坐标去比较横坐标的大小,通常的做法是:(1)先判断这几个点是否在同一个象限内,如果不在,则判断其正负,然后做出判断;(2)如果在同一个象限内,则可以根据反比例函数的性质来进行解答.
三、解答题(本大题共5个小题,共48分)
14、(1); (2); (3)结论:;理由见解析;(4)6
【解析】
(1)根据平行四边形的性质可知:,即可解决问题;
(2)理由平行四边形的性质可知:,即可解决问题;
(3)结论:.如图③中,作于,延长交于.根据;
(4)设的面积为,的面积为,则,推出,可得的面积;
【详解】
解:(1)如图①中,,.
四边形是平行四边形,
,
,
,
.
故答案为.
(2)如图②中,四边形是平行四边形,
,,
,
.
故答案为.
(3)结论:.
理由:如图③中,作于,延长交于.
,,
,
.
(4)设的面积为,的面积为,
则,
,
的面积,
本题考查平行四边形的判定和性质、平行线的性质、等高模型等正整数,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
15、(1)21;(2)x1=,x2=−1.
【解析】
(1)首先化为最简二次根式,然后根据二次根式的乘法法则进行计算;
(2)利用因式分解法解方程即可.
【详解】
解:(1)原式;
(2),
,
∴或,
解得:x1=,x2=−1.
此题考查了解一元二次方程和二次根式的乘法运算,熟练掌握运算法则是解本题的关键.
16、(1)点B的坐标为(15,900);(2)s=﹣180t+310;(3)小东能在毕业晚会开始前到达学校.
【解析】
(1)由图象可知:父子俩从出发到相遇时花费了15分钟,设小东步行的速度为x米/分,则小东父亲骑车的速度为3x米/分,依题意得:
15(x+3x)=310,
解得:x=1.
∴两人相遇处离学校的距离为1×15=900(米).
∴点B的坐标为(15,900);
(2)设直线AB的解析式为:s=kt+b.
∵直线AB经过点A(0,310)、B(15,900)
∴
∴直线AB的解析式为:s=﹣180t+310;
(3)解法一:
小东取道具遇到父亲后,赶往学校的时间为: =5(分),
∴小东从取道具到赶往学校共花费的时间为:15+5=20(分),
∵20<25,
∴小东能在毕业晚会开始前到达学校.
解法二:
在s=﹣180t+310中,令s=0,即﹣180t+310=0,解得:t=20,
即小东的父亲从出发到学校花费的时间为20(分),
∵20<25,
∴小东能在毕业晚会开始前到达学校.
17、解:(1)(2)
【解析】
(1)把左边配成完全平方式,右边化为常数;
(2)因方程公因式很明显故用因式分解法求解.
【详解】
(1)把方程的常数项移得,
x2−4x=−1,
方程两边同时加上一次项系数一半的平方得,
x2−4x+4=−1+4,
配方得,(x−2)2=3,
解得:x1=2+,x2=2−
(2)先提取公因式5x+4得,
(5x+4)(x−1)=0,
解得x1=1,x2=−
18、30(海里/时)
【解析】
通过两船的航线角度可知,∠CAB=90°,则三角形ABC为直角三角形,可以通过勾股定理计算出AB的长度,然后求乙船的速度.
【详解】
通过两船的航线角度可知,∠CAB=90°,则三角形ABC为直角三角形
又AC为甲船航行的路程,则AC=16×3=48
由可知:
AB=
所以乙船的航速为90÷3=30(海里/时)
故答案为30(海里/时)
本题考察了方位角的判断,构造出直角三角形,运用勾股定理解题,需要清楚的是勾股定理是指,直角三角形中两个直角边的平方和等于斜边的平方.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
由分式方程无解得到x=5,将其代入化简后的整式方程即可求出答案.
【详解】
将方程去分母得到:x-2(x-5)=-m,即10-x=-m,
∵分式方程无解,
∴x=5,
将x=5代入10-x=-m中,解得m=-5,
故答案为:-5.
此题考查分式方程无解的情况,正确理解分式方程无解的性质得到整式方程的解是解题的关键.
20、20%
【解析】
设平均每次降价的百分率为x,则第一次降价后的单价是原来的(1-x),第二次降价后的单价是原来的(1-x)2,根据题意列方程求解即可.
【详解】
设平均每次降价的百分率为x,根据题意列方程得
250×(1-x)2=160,
解得x1=0.2,2,x2=1.8(不符合题意,舍去),
即该商品平均每次降价的百分率为20%,
故答案为:20%.
本题考查了一元二次方程的应用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.
21、1
【解析】
先根据含30度的直角三角形三边的关系得到AC,再根据平移的性质得AD=BE,ADBE,于是可判断四边形ABED为平行四边形,则根据平行四边形的面积公式得到BE的方程,则可计算出BE=1,即得平移距离.
【详解】
解:在Rt△ABC中,∵∠ABC=30°,
∴AC=AB=5,
∵△ABC沿CB向右平移得到△DEF,
∴AD=BE,ADBE,
∴四边形ABED为平行四边形,
∵四边形ABED的面积等于20,
∴AC•BE=20,即5BE=20,
∴BE=1,即平移距离等于1.
故答案为:1.
本题考查了含30°角的直角三角形的性质,平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了平行四边形的判定与性质.
22、1
【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣3=0,得到x=3,然后代入整式方程算出a的值即可.
【详解】
方程两边同时乘以x﹣3得:1+x﹣3=a﹣x.
∵方程有增根,∴x﹣3=0,解得:x=3,∴1+3﹣3=a﹣3,解得:a=1.
故答案为:1.
本题考查了分式方程的增根,先根据增根的定义得出x的值是解答此题的关键.
23、6
【解析】
由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=6,得出BD=2OB=6,由勾股定理求出AD即可.
【详解】
解:∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB=6,
∴BD=2OB=12,
∴
故答案为:
此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
根据平行四边形的性质得出AB=CD,AB∥CD,求出△BAE≌△DCF,求出BE=DF,根据平行四边形的判定得出即可.
【详解】
证明:∵BE⊥AC,DF⊥AC,
∴BE∥DF,∠AEB=∠DFC=90°,
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠BAE=∠DCF,
在△BAE和△DCF中
∴△BAE≌△DCF(AAS),
∴BE=DF,
∵BE∥DF,
∴四边形BFDE是平行四边形.
本题考查了平行四边形的性质和判定、平行线的性质和全等三角形的性质和判定,能求出BE=DF和BE∥DF是解此题的关键.
25、(1);(2),.
【解析】
(1)代入即可进行求解;
(2)根据因式分解法即可求解一元二次方程.
【详解】
(1)代入得:
;
(2)解:,
,
,.
此题主要考查代数式求值与解一元二次方程,解题的关键是熟知整式的运算及方程的解法.
26、(1)a=-5;(2)可以看作二元一次方程组的解.
【解析】
(1)首先利用待定系数法求得直线的解析式,然后直接把P点坐标代入可求出a的值;
(2)利用待定系数法确定l2得解析式,由于P(-2,a)是l1与l2的交点,所以点(-2,-5)可以看作是解二元一次方程组所得.
【详解】
.解:(1)设直线 的解析式为y=kx+b,将(2,3),(-1,-3)代入,
,解得,所以y=2x-1.
将x=-2代入,得到a=-5;
(2)由(1)知点(-2,-5)是直线与直线 交点,则:y=2.5x;
因此(-2,a)可以看作二元一次方程组的解.
故答案为:(1)a=-5;(2)可以看作二元一次方程组的解.
本题综合考查待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及一次函数与二元一次方程组.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年广东深圳市龙华区锦华实验学校数学九上开学检测试题【含答案】: 这是一份2024-2025学年广东深圳市龙华区锦华实验学校数学九上开学检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年北京市精华学校九上数学开学达标检测模拟试题【含答案】: 这是一份2024-2025学年北京市精华学校九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东深深圳市百合外国语学校2023-2024学年数学九年级第一学期期末教学质量检测试题含答案: 这是一份广东深深圳市百合外国语学校2023-2024学年数学九年级第一学期期末教学质量检测试题含答案,共7页。