2024-2025学年山东省济宁市微山县九年级数学第一学期开学考试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)《中国诗词大会》是央视科教频道自主研发的一档大型文化益智节目,节目带动全民感受诗词之趣,分享诗词之美,从古人的智慧和情怀中汲取营养,涵养心灵.比赛中除了来自复旦附中的才女武亦姝表现出色外,其他选手的实力也不容小觑.下表是随机抽取的10名挑战者答对的题目数量的统计表,则这10名挑战者答对的题目数量的中位数为答对题数( )
A.4B.5C.6D.7
2、(4分)一组从小到大排列的数据:a,3,5,5,6(a为正整数),唯一的众数是5,则该组数据的平均数是( )
A.4.2或4B.4C.3.6或3.8D.3.8
3、(4分)某小组7名同学积极捐出自己的零花钱支援地震灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,1.这组数据的众数和中位数分别是( ).
A.50,20B.50,30C.50,50D.1,50
4、(4分)把分解因式,正确的是( )
A.B.C.D.
5、(4分)已知一次函数的图象不经过第三象限,则、的符号是( )
A.,B.,C.,D.,
6、(4分)如图,在中,,,于点,则与的面积之比为( )
A.B.C.D.
7、(4分)在、、、、3中,最简二次根式的个数有( )
A.4B.3C.2D.1
8、(4分)如图,一次函数的图象交轴于点,交轴于点,点在线段上(不与点,重合),过点分别作和的垂线,垂足为.当矩形的面积为1时,点的坐标为( )
A.B.C.或D.或
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如果多边形的每个内角都等于,则它的边数为______.
10、(4分)不等式﹣2x>﹣4的正整数解为_____.
11、(4分)一次函数的图像是由直线__________________而得.
12、(4分)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长度为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF.若四边形ABEF的周长为16,∠C=60°,则四边形ABEF的面积是___.
13、(4分)因式分解:_________
三、解答题(本大题共5个小题,共48分)
14、(12分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟进水量和出水量是两个常数.容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.
(1)求y关于x的函数解析式;
(2)每分钟进水、出水各多少升?
15、(8分)计算:
(1)
(2) -
16、(8分)如图,点E在正方形ABCD内,且∠AEB=90°,AB=10,BE=8,求阴影部分的面积.
17、(10分)在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x,购票总价为y):
方案一:提供8000元赞助后,每张票的票价为50元;
方案二:票价按图中的折线OAB所表示的函数关系确定.
(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少?
(2)求方案二中y与x的函数关系式;
(3)至少买多少张票时选择方案一比较合算?
18、(10分)如图1,在正方形中,是对角线,点在上,是等腰直角三角形,且,点是的中点,连结与.
(1)求证:.
(2)求证:.
(3)如图2,若等腰直角三角形绕点按顺时针旋转,其他条件不变,请判断的形状,并证明你的结论.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在边长为1的等边△ABC的边AB取一点D,过点D作DE⊥AC于点E,在BC延长线取一点F,使CF=AD,连接DF交AC于点G,则EG的长为________
20、(4分)如图,已知:∠MON=30°,点A1、A2、A3 在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为______.
21、(4分)一次函数y=kx+2(k≠0)的图象与x轴交于点A(n,0),当n>0时,k的取值范围是_____.
22、(4分)如图,已知A点的坐标为,直线与y轴交于点B,连接AB,若,则____________.
23、(4分)已知直线y=kx+3经过点A(2,5)和B(m,-2),则m= ___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,反比例函数的图象与一次函数的图象交于点,,点的横坐标实数4,点在反比例函数的图象上.
(1)求反比例函数的表达式;
(2)观察图象回答:当为何范围时,;
(3)求的面积.
25、(10分)计算
(1)()-()
(2)(2+3)(2-3)
26、(12分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
(1)画出△ABC关于原点成中心对称的三角形△A′B′C′;
(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点B″的坐标;
(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
将这组数据从小到大的顺序排列后,根据中位数的定义就可以求解.
【详解】
解:将这组数据从小到大的顺序排列后,处于中间位置第1和第6个数是1、1,那么由中位数的定义可知,这组数据的中位数是1.
故选:B.
本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
2、A
【解析】
根据题意得出正整数a的值,再根据平均数的定义求解可得.
【详解】
解:∵数据:a,3,5,5,6(a为正整数),唯一的众数是5,
∴a=1或a=2,
当a=1时,平均数为:;
当a=2时,平均数为:;
故选:A.
本题主要考查了平均数的求法,根据数据是从小到大排列得出a的值是解题的关键.
3、C
【解析】
根据众数和中位数的定义进行计算即可.
【详解】
众数是一组数据中出现次数最多的数,在这一组数据中2是出现次数最多的,故众数是2;
将这组数据从小到大的顺序排列为:20,25,30,2,2,2,1,处于中间位置的那个数是2,由中位数的定义可知,这组数据的中位数是2.
故选:C.
本题考查众数和中位数,明确众数和中位数的概念是关键.
4、A
【解析】
由提公因式法,提出公因式a,即可得到答案.
【详解】
解:,
故选择:A.
本题考查了提公因式法,解题的关键是正确找出公因式.
5、C
【解析】
根据图象在坐标平面内的位置关系确定,的取值范围,从而求解.
【详解】
解:函数的图象不经过第三象限,,
直线与轴正半轴相交或直线过原点,
时.
故选:C.
本题主要考查一次函数图象在坐标平面内的位置与、的关系.
时,直线必经过一、三象限;时,直线必经过二、四象限;时,直线与轴正半轴相交;时,直线过原点;时,直线与轴负半轴相交.
6、A
【解析】
易证得△BCD∽△BAC,得∠BCD=∠A=30°,那么BC=2BD,即△BCD与△BAC的相似比为1:2,根据相似三角形的面积比等于相似比的平方即可得到正确的结论.
【详解】
解:∵
∴∠BDC=90°,
∵∠B=∠B,∠BDC=∠BCA=90°,
∴△BCD∽△BAC;①
∴∠BCD=∠A=30°;
Rt△BCD中,∠BCD=30°,则BC=2BD;
由①得:S△BCD:S△BAC=(BD:BC)2=1:4;
故选:A.
此题主要考查的是直角三角形和相似三角形的性质;
相似三角形的性质:相似三角形的周长比等于相似比,面积比等于相似比的平方.
7、C
【解析】
最简二次根式就是被开方数不含分母,并且不含有开方开的尽的因数或因式的二次根式,根据以上条件即可判断.
【详解】
、、不是最简二次根式.
、3是最简二次根式.
综上可得最简二次根式的个数有2个.
故选C.
本题考查最简二次根式的定义,一定要掌握最简二次根式必须满足两个条件,被开方数不含分母且被开方数不含能开得尽方的因数或因式.
8、C
【解析】
设P(a,−2a+3),则利用矩形的性质列出关于a的方程,通过解方程求得a值,继而求得点P的坐标.
【详解】
解:∵点P在一次函数y=−2x+3的图象上,
∴可设P(a,−2a+3)(a>0),
由题意得 a(−2a+3)=2,
整理得:2a2−3a+2=0,
解得 a2=2,a2=,
∴−2a+3=2或−2a+3=2.
∴P(2,2)或时,矩形OCPD的面积为2.
故选:C.
本题考查了一次函数图象上点的坐标特征.一次函数图象上所有点的坐标都满足该函数关系式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.
【详解】
∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=1.
故答案为:1.
本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.
10、x=1.
【解析】
将不等式两边同时除以-2,即可解题
【详解】
∵﹣2x>-4
∴x<2
∴正整数解为:x=1
故答案为x=1.
本题考查解不等式,掌握不等式的基本性质即可解题.
11、向上平移五个单位
【解析】
根据“上加下减”即可得出答案.
【详解】
一次函数的图像是由直线向上平移五个单位得到的,
故答案为:向上平移五个单位.
本题考查一次函数图象的平移,熟记“上加下减,左加右减”的平移规律是解题的关键.
12、8.
【解析】
由作法得AE平分∠BAD,AB=AF,所以∠1=∠2,再证明AF=BE,则可判断四边形AFEB为平行四边形,于是利用AB=AF可判断四边形ABEF是菱形;根据菱形的性质得AG=EG,BF⊥AE,求出BF和AG的长,即可得出结果.
【详解】
由作法得AE平分∠BAD,AB=AF,
则∠1=∠2,
∵四边形ABCD为平行四边形,
∴BE∥AF,∠BAF=∠C=60°,
∴∠2=∠BEA,
∴∠1=∠BEA=30°,
∴BA=BE,
∴AF=BE,
∴四边形AFEB为平行四边形,△ABF是等边三角形,
而AB=AF,
∴四边形ABEF是菱形;
∴BF⊥AE,AG=EG,
∵四边形ABEF的周长为16,
∴AF=BF=AB=4,
在Rt△ABG中,∠1=30°,
∴BG=AB=2,AG=BG=2,
∴AE=2AG=,
∴菱形ABEF的面积;
故答案为:
本题考查了基本作图、平行四边形的性质与判定、菱形的判定与性质、等边三角形的判定与性质;证明四边形ABEF是菱形是解题的关键.
13、x(x-9)
【解析】
分析:直接提取公因式x,进而分解因式即可.
详解: x2﹣9x=x(x﹣9).
故答案为:x(x﹣9).
点睛:本题主要考查了提取公因式法分解因式,正确找出公因式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)每分钟进水、出水各5L,L.
【解析】
(1)根据题意和函数图象可以求得y与x的函数关系式;
(2)根据函数图象中的数据可以求得每分钟进水、出水各多少升.
【详解】
解:(1)当0≤x≤4时,设y关于x的函数解析式是y=kx,
4k=20,得k=5,
即当0≤x≤4时,y与x的函数关系式为y=5x,
当4<x≤12时,设y与x的函数关系式为y=ax+b,
,得,
即当4≤x≤12时,y与x的函数关系式为,
由上可得,;
(2)进水管的速度为:20÷4=5L/min,
出水管的速度为: L/min,
答:每分钟进水、出水各5L, L.
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
15、(1);(2)
【解析】
分析:
(1)按照“二次根式加减法法则”进行计算即可;
(2)根据“二次根式相关运算的运算法则”结合“平方差公式和完全平方公式”进行计算即可.
详解:
(1)原式= ==;
(2)原式= = = .
点睛:熟记“二次根式的相关运算法则和平方差公式及完全平方公式”是解答本题的关键.
16、76
【解析】
由勾股定理先求出AE=6,然后求出正方形和直角三角形的面积,最后相减可得阴影部分的面积.
【详解】
∵∠AEB=90°,AB=10,BE=8.
∴由勾股定理得, =,
∴,
,
∴.
本题主要考查了勾股定理的应用,也考查了正方形和三角形的面积计算,比较基础.
17、 (1)14000,13200; (2)y=60x+1.(3)200.
【解析】
试题分析:(1)方案一中,总费用y=8000+50x,代入x=120求得答案;由图可知方案二中,当x=120时,对应的购票总价为13200元;
(2)分段考虑当0<x≤100时,当x≥100时,设出一次函数解析式,把其中两点的坐标代入即可求得相应的函数解析式;
(3)由(1)(2)的解析式建立不等式,求得答案即可.
试题解析:(1)若购买120张票时,
方案一购票总价:y=8000+50x=14000元,
方案二购票总价:y=13200元.
(2)当0<x≤100时,
设y=kx,代入(100,12000)得
12000=100k,
解得k=120,
∴y=120x;
当x>100时,
设y=ax+b,代入(100,12000)、(120,13200)得
,
解得,
∴y=60x+1.
(3)由(1)可知,要选择方案一比较合算,必须超过120张,由此得
8000+50x≤60x+1,
解得x≥200,
所以至少买200张票时选择方案一比较合算.
考点:一次函数的应用.
18、 (1)证明见解析;(2)证明见解析;(3)△CEF是等腰直角三角形.
【解析】
(1)根据直角三角形斜边上的中线等于斜边的一半,可得EF=DF=DG,CF=DF=DG,从而得到结论;
(2)根据等边对等角可得再根据三角形的一个外角等于和它不相邻的两个内角和求出然后根据正方形的对角线平分一组对角求出,求出,从而得证;
(3)延长交于,先求出,再根据两直线平行,内错角相等,求出,然后利用ASA证明和全等,根据全等三角形对应边相等,可得EG=DH,EF=FH,再求出CE=CH,然后根据等腰三角形三线合一的性质证明即可.
【详解】
解:(1)证明:,点是的中点,
,
∵正方形中,,点是的中点,
,
;
(2)证明:,
,
,
在正方形中,,
,
;
(3)解:是等腰直角三角形.
理由如下:如图,延长交于,
∵,
,
,
,
∵点是的中点,
,
在和中,
,
,
,
,
,
即,
(等腰三角形三线合一),,
∴△CEF是等腰直角三角形.
本题综合考查了直角三角形斜边上的中线性质,等腰直角三角形,正方形的性质,全等三角形的判定和性质等知识,在证明过程中,分解出基础图形是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
过D作BC的平行线交AC于H,通过求证△DHG和△FCG全等,推出HG=CG,再通过证明△ADH是等边三角形和DE⊥AC,推出AE=EH,即可推出AE+GC=EH+HG,可得EG=AC,即可推出EG的长度.
【详解】
解:如图,过D作DH∥BC,交AC于点H.
∴∠F=∠GDH,
∵△ABC是等边三角形,
∴∠ADH=∠B=60°,∠AHD=∠ACB=60°,
∴△ADH是等边三角形,
∴AD=DH,
∵AD=CF,
∴DH=CF,
∵∠DGH=∠FGC,
∴△DGH≌△FGC(AAS),
∴HG=CG.
∵DE⊥AC,△ADH是等边三角形,
∴AE=EH,
∴AE+CG=EH+HG,
∴EG=AC=;
故答案为:.
本题主要考查等边三角形的判定与性质、平行线的性质、全等三角形的判定与性质,关键在于正确地作出辅助线,熟练运用相关的性质、定理,认真地进行计算.
20、32a
【解析】
根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.
【详解】
如图所示:
∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=a,
∴A2B1=a,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=4a,
A4B4=8B1A2=8a,
A5B5=16B1A2=16a,
以此类推:A6B6=32B1A2=32a.
故答案是:32a.
考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.
21、k<1
【解析】
分析:根据题意可以用含k的式子表示n,从而可以得出k的取值范围.
详解:∵一次函数y=kx+2(k≠1)的图象与x轴交于点A(n,1),
∴n=﹣,
∴当n>1时,﹣>1,
解得,k<1,
故答案为k<1.
点睛:本题考查一次函数图象与系数的关系,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
22、2
【解析】
如图,设直线y=x+b与x轴交于点C,由直线的解析式是y=x+b,可得OB=OC=b,继而得∠BCA=45°,再根据三角形外角的性质结合∠α=75°可求得∠BAC=30°,从而可得AB=2OB=2b,根据点A的坐标可得OA的长,在Rt△BAO中,根据勾股定理即可得解.
【详解】
设直线y=x+b与x轴交于点C,如图所示,
∵直线的解析式是y=x+b,
∴OB=OC=b,则∠BCA=45°;
又∵∠α=75°=∠BCA+∠BAC=45°+∠BAC,
∴∠BAC=30°,
又∵∠BOA=90°,
∴AB=2OB=2b,
而点A的坐标是(,0),
∴OA=,
在Rt△BAO中,AB2=OB2+OA2,
即(2b)2=b2+()2,
∴b=2,
故答案为:2.
本题考查了一次函数的性质、勾股定理的应用、三角形外角的性质等,求得∠BAC=30°是解答本题的关键.
23、-1
【解析】
由题意将点A(2,1)和B(m,-2),代入y=kx+3,即可求解得到m的值.
【详解】
解:∵直线y=kx+3经过点A(2,1)和B(m,-2),
∴,解得,
∴.
故答案为:-1.
本题考查一次函数图象性质,注意掌握点过一次函数图象即有点坐标满足一次函数解析式.
二、解答题(本大题共3个小题,共30分)
24、(1)反比例函数的表达式为y=;(2)x<﹣2或0<x<2时,y1>y2;(3)△PAB的面积为1.
【解析】
(1)利用一次函数求得B点坐标,然后用待定系数法求得反函数的表达式即可;
(2)观察图象可知,反函数的图象在一次函数图象上方的部分对应的自变量的取值范围就是不等式y1>y2的解;
(3)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,由点A与点B关于原点对称,得出OA=OB,则S△AOP=S△BOP,即S△PAB=2S△AOP,再求出点P的坐标,利用待定系数法求得直线AP的函数解析式,得到点C的坐标,然后根据S△AOP=S△AOC+S△POC,即可求得结果.
【详解】
(1)将x=2代入y2=得:y=1,
∴B(2,1),
∴k=xy=2×1=2,
∴反比例函数的表达式为y=;
(2)由正比例函数和反比例函数的对称性可知点A的横坐标为﹣2.
∵y1>y2,
∴反比例函数图象位于正比例函数图象上方,
∴x<﹣2或0<x<2;
(3)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,
设AP与y轴交于点C,如图,
∵点A与点B关于原点对称,
∴OA=OB,
∴S△AOP=S△BOP,
∴S△PAB=2S△AOP,
y1=中,当x=1时,y=2,
∴P(1,2),
设直线AP的函数关系式为y=mx+n,
把点A(﹣2,﹣1)、P(1,2)代入y=mx+n,
得,
解得m=3,n=1,
故直线AP的函数关系式为y=x+3,
则点C的坐标(0,3),OC=3,
∴S△AOP=S△AOC+S△POC
=OC•AR+OC•PS
=×3×2+×3×1
=,
∴S△PAB=2S△AOP=1.
25、 (1) ;(2)-1.
【解析】
(1)先把二次根式化为最简二次根式,然后合并即可;
(2)利用平方差公式计算.
【详解】
(1)原式=
=;
(2)原式=8-9=-1.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
26、(1)图略;(2)图略,点B″的坐标为(0,﹣6);(3)点D坐标为(﹣7,3)或(3,3)或(﹣5,﹣3).
【解析】
(1)根据网格结构找出点A、B、C关于原点对称的点A′、B′、C′的位置,然后顺次连接即可;
(2)根据网格结构找出点A、B、C绕坐标原点O逆时针旋转90°的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点B的对应点的坐标;
(3)分AB、BC、AC是平行四边形的对角线三种情况解答.
【详解】
解:(1)如图所示△A′B′C′即为所求;
(2)如图所示,△即为所求;
(3)D(-7,3)或(-5,-3)或(3,3).
当以BC为对角线时,点D3的坐标为(-5,-3);
当以AB为对角线时,点D2的坐标为(-7,3);
当以AC为对角线时,点D1坐标为(3,3).
本题考查了利用旋转变换作图,平行四边形的对边相等,熟记性质以及网格结构准确找出对应点的位置是解题的关键.
题号
一
二
三
四
五
总分
得分
答对题数
4
5
7
8
人数
3
4
2
1
2024-2025学年山东省济宁市兖州市九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年山东省济宁市兖州市九年级数学第一学期开学学业质量监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山东省济宁市兖州区东方中学数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年山东省济宁市兖州区东方中学数学九年级第一学期开学达标检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山东省济宁市十五中学数学九上开学考试模拟试题【含答案】: 这是一份2024-2025学年山东省济宁市十五中学数学九上开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。