终身会员
搜索
    上传资料 赚现金

    2024-2025学年江苏省新沂市第四中学数学九上开学教学质量检测模拟试题【含答案】

    立即下载
    加入资料篮
    2024-2025学年江苏省新沂市第四中学数学九上开学教学质量检测模拟试题【含答案】第1页
    2024-2025学年江苏省新沂市第四中学数学九上开学教学质量检测模拟试题【含答案】第2页
    2024-2025学年江苏省新沂市第四中学数学九上开学教学质量检测模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年江苏省新沂市第四中学数学九上开学教学质量检测模拟试题【含答案】

    展开

    这是一份2024-2025学年江苏省新沂市第四中学数学九上开学教学质量检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)等腰三角形的周长为20,设底边长为,腰长为,则关于的函数解析式为(为自变量)( )
    A.B.C.D.
    2、(4分)历史上对勾股定理的一种证法采用了如图所示的图形,其中两个全等的直角三角形的直角边在同一条直线上.证明中用到的面积相等关系是( )
    A.B.
    C.D.
    3、(4分)若代数式有意义,则x应满足( )
    A.x=0B.x≠1C.x≥﹣5D.x≥﹣5且x≠1
    4、(4分)△ABC中,AB=20,AC=13,高AD=12,则△ABC的周长是 ( )
    A.54B.44C.54或44D.54或33
    5、(4分)下列计算正确的是( )
    A.B.C.D.
    6、(4分)一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90,则这五个数据的中位数是( )
    A.90B.95C.100D.105
    7、(4分)下列说法正确的是( )
    A.同位角相等
    B.同一平面内的两条不重合的直线有相交、平行和垂直三种位置关系
    C.三角形的三条高线一定交于三角形内部同一点
    D.三角形三条角平分线的交点到三角形三边的距离相等
    8、(4分)如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有( )
    A.2个B.3个C.4个D.5个
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在▱ABCD中,按以下步骤作图:①以C为圆心,以适当长为半径画弧,分别交BC,CD于M,N两点;②分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BCD的内部交于点P;⑨连接CP并延长交AD于E.若AE=2,CE=6,∠B=60°,则ABCD的周长等于_____.
    10、(4分)如图,点A、B都在反比例函数y=(x>0)的图像上,过点B作BC∥x轴交y轴于点C,连接AC并延长交x轴于点D,连接BD,DA=3DC,S△ABD=1.则k的值为_______.
    11、(4分)如果等腰梯形两底差的一半等于它的高,那么此梯形较小的一个底角等于_________度.
    12、(4分)用换元法解方程+3=0时,如果设=y,那么将原方程变形后所得的一元二次方程是_____.
    13、(4分)如图,在矩形ABCD中,AB=1,BC=7,将矩形ABCD绕点C逆时针旋转90°得到矩形A′B′CD′,点E、F分别是BD、B′D′的中点,则EF的长度为________cm.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)是正方形的边上一动点(不与重合), ,垂足为,将绕点旋转,得到,当射线经过点时,射线与交于点.
    求证:;
    在点的运动过程中,线段与线段始终相等吗?若相等请证明;若不相等,请说明理由.
    15、(8分)如图,点A的坐标为(﹣,0),点B的坐标为(0,3).
    (1)求过A,B两点直线的函数表达式;
    (2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.
    16、(8分)如图,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=1.
    (1)连接BC,求BC的长;
    (2)求△BCD的面积.
    17、(10分)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性
    笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,
    水性笔若干支(不少于4支).
    (1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;
    (2)对的取值情况进行分析,说明按哪种优惠方法购买比较便宜;
    (3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.
    18、(10分)A、B两地相距120km,甲、乙两车同时从A地出发驶向B地,甲车到达B地后立即按原速返回.如图是它们离A地的距离y(km)与行驶时间x(h)之间的函数图象.
    (1)求甲车返回时(即CD段)与之间的函数解析式;
    (2)若当它们行驶了2.5h时,两车相遇,求乙车的速度及乙车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;
    (3)直接写出当两车相距20km时,甲车行驶的时间.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)写一个图象经过点(﹣1,2)且y随x的增大而减小的一次函数解析式_____.
    20、(4分)将直线的图象向上平移3个单位长度,得到直线______.
    21、(4分)一个矩形的长比宽多1cm,面积是132cm2,则矩形的长为________cm.
    22、(4分)如图,在矩形ABCD中,DE⊥AC,∠CDE=2∠ADE,那么∠BDC的度数是________.
    23、(4分)如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件_________(只添一个即可),使四边形ABCD是平行四边形.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平面直角坐标系中,四边形为正方形,已知点、,点、在第二象限内.
    (1)点的坐标___________;
    (2)将正方形以每秒个单位的速度沿轴向右平移秒,若存在某一时刻,使在第一象限内点、两点的对应点、正好落在某反比例函数的图象上,请求出此时的值以及这个反比例函数的解析式;
    (3)在(2)的情况下,问是否存在轴上的点和反比例函数图象上的点,使得以、、、四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点、的坐标;若不存在,请说明理由.
    25、(10分)如图所示,方格纸中的每个小方格都是边长为个单位长度的正方形,在建立平面直角坐标系后,的顶点均在格点上.

    ①以原点为对称中心,画出与关于原点对称的.
    ②将绕点沿逆时针方向旋转得到,画出,并求出的长.
    26、(12分)如图,的一个外角为,求,,的度数.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据等腰三角形的腰长=(周长-底边长)÷2,把相关数值代入即可.
    【详解】
    等腰三角形的腰长y=(20-x)÷2=-+1.
    故选C.
    考查列一次函数关系式;得到三角形底腰长的等量关系是解决本题的关键.
    2、D
    【解析】
    用三角形的面积和、梯形的面积来表示这个图形的面积,从而证明勾股定理.
    【详解】
    解:∵由S△EDA+S△CDE+S△CEB=S四边形ABCD.
    可知ab+c2+ab=(a+b)2,
    ∴c2+2ab=a2+2ab+b2,整理得a2+b2=c2,
    ∴证明中用到的面积相等关系是:S△EDA+S△CDE+S△CEB=S四边形ABCD.
    故选D.
    本题考查勾股定理的证明依据.此类证明要转化成该图形面积的两种表示方法,从而转化成方程达到证明的结果.
    3、D
    【解析】
    根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.
    【详解】
    要使代数式有意义,必须有x+5≥0且x-1≠0,
    即x≥-5且x≠1,
    故选D.
    4、C
    【解析】
    根据题意画出示意图进行分析判断,然后根据勾股定理计算出底边BC的长,最后求和即可.
    【详解】
    (1)
    在直角三角形ACD中,有
    在直角三角形ADB中,有
    则CB=CD+DB=5+16=21
    所以三角形的面积为CB+AC+AB=21+13+20=54.
    (2)
    在直角三角形ACD中,有
    在直角三角形ADB中,有
    则CB=DB -CD =16-5=11
    所以三角形的面积为CB+AC+AB=11+13+20=44.
    故答案为:D.
    本题考查了勾股定理的应用,解题关键在于以高为突破点把三角形分为高在三角形内部和外部的两种情况.
    5、B
    【解析】
    分析:根据二次根式的性质,二次根式的乘法,二次根式的除法逐项计算即可.
    详解: A. ,故不正确;
    B. ,故正确;
    C. ,故不正确;
    D. ,故不正确;
    故选B.
    点睛: 本题考查了二次根式的性质与计算,熟练掌握二次根式的性质、二次根式的乘除法法则是解答本题的关键.
    6、B
    【解析】
    试题分析:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.将数据按照从小到大的顺序排列为:90,90,1,105,110,根据中位数的概念可得中位数为1.故答案选B.
    考点:中位数.
    7、D
    【解析】
    利用平行线的性质、直线的位置关系、三角形的高的定义及角平分线的性质分别判断后即可确定正确的选项.
    【详解】
    A、两直线平行,同位角相等,故错误;
    B、同一平面内的两条不重合的直线有相交、平行两种位置关系,故错误;
    C、钝角三角形的三条高线的交点位于三角形的外部,故错误;
    D、三角形三条角平分线的交点到三角形三边的距离相等,正确,
    故选:D.
    本题考查了平行线的性质、直线的位置关系、三角形的高的定义及角平分线的性质等知识,属于基础性的定义及定理,比较简单.
    8、C
    【解析】
    试题分析:∵在矩形ABCD中,AE平分∠BAD,
    ∴∠BAE=∠DAE=45°,
    ∴△ABE是等腰直角三角形,
    ∴AE=AB,
    ∵AD=AB,
    ∴AE=AD,
    又∠ABE=∠AHD=90°
    ∴△ABE≌△AHD(AAS),
    ∴BE=DH,
    ∴AB=BE=AH=HD,
    ∴∠ADE=∠AED=(180°﹣45°)=67.5°,
    ∴∠CED=180°﹣45°﹣67.5°=67.5°,
    ∴∠AED=∠CED,故①正确;
    ∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),
    ∴∠OHE=∠AED,
    ∴OE=OH,
    ∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,
    ∴∠OHD=∠ODH,
    ∴OH=OD,
    ∴OE=OD=OH,故②正确;
    ∵∠EBH=90°﹣67.5°=22.5°,
    ∴∠EBH=∠OHD,
    又BE=DH,∠AEB=∠HDF=45°
    ∴△BEH≌△HDF(ASA),
    ∴BH=HF,HE=DF,故③正确;
    由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,
    ∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;
    ∵AB=AH,∠BAE=45°,
    ∴△ABH不是等边三角形,
    ∴AB≠BH,
    ∴即AB≠HF,故⑤错误;
    综上所述,结论正确的是①②③④共4个.
    故选C.
    考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    首先证明是等边三角形,求出,即可解决问题.
    【详解】
    解:由作图可知,
    四边形是平行四边形,
    ,,


    是等边三角形,

    ,,
    四边形的周长为1,
    故答案为1.
    本题考查作图复杂作图,平行四边形的性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    10、2.
    【解析】
    过点A作AN⊥x轴交x轴于点N,交BC于点M,设B(x,y),则BC=x,MN=y,由平行线分线段成比例定理得AM=2y,根据 =1 ,即可求得xy=k的值.
    【详解】
    解:如图,过点A作AN⊥x轴交x轴于点N,交BC于点M,设B(x,y),则BC=x,MN=y,
    ∵BC∥x轴,DA=3DC,
    ∴AN=3MN,AM=2MN
    ∴MN=y,AM =2y
    ∵ ,S△ABD=1
    ∴ ,
    ∴xy=2,
    ∵反比例函数y=(x>0),
    ∴k=xy=2.
    故答案为:2.
    本题考查平行线分线段成比例定理,反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
    11、1
    【解析】
    过点D作DE∥AB,交BC于点E.根据等腰梯形的性质可得到△CDE是等腰三角形,根据三线合一性质即得到CF=DF,从而可求得其较小底角的度数.
    【详解】
    解:如图,DF是等腰梯形ABCD的高,过点D作DE∥AB,交BC于点E.
    ∵AD//BC,DE∥AB,
    ∴四边形ABED是平行四边形,
    ∴AB=DE,
    ∴CD=DE,
    ∵DF⊥BC,
    ∴EF=CF,
    ∵BC-AD=2DF,
    ∴CF=DF,
    ∴△CDF是等腰直角三角形,
    ∴∠C=1°.
    故答案为:1.
    此题考查等腰梯形的性质、梯形中常见的辅助线的作法、平行四边形的判定与性质,等腰直角三角形的判定与性质,正确作出辅助线是解答本题的关键.
    12、3y2+3y﹣2=1
    【解析】
    设,则原方程化为3y﹣+3=1,,再整理即可.
    【详解】
    ﹣+3=1,
    设=y,则原方程化为:3y﹣+3=1,
    即3y2+3y﹣2=1,
    故答案为:3y2+3y﹣2=1.
    本题考查了解分式方程,能够正确换元是解此题的关键.
    13、5
    【解析】
    【分析】如图,连接AC、A′C,AA′,由矩形的性质和勾股定理求出AC长,由矩形的性质得出E是AC的中点,F是A′C的中点,证出EF是△ACA′的中位线,由三角形中位线定理得出EF=AA′,由等腰直角三角形的性质得出AA′=AC,即可得出结果.
    【详解】如图,连接AC、A′C,AA′,
    ∵矩形ABCD绕点C逆时针旋转90°得到矩形A′B′CD′,
    ∴∠ACA′=90°,∠ABC=90°,
    ∴AC=,AC=BD=A′C=B′D′,
    AC与BD互相平分,A′C与B′D′互相平分,
    ∵点E、F分别是BD、B′D′的中点,
    ∴E是AC的中点,F是A′C的中点,
    ∵∠ACA′=90°,∴△ACA′是等腰直角三角形,
    ∴AA′=AC==10,
    ∴EF=AA′=5,
    故答案为5.
    【点睛】本题考查了矩形的性质、旋转的性质、勾股定理、等腰直角三角形的判定与性质,三角形的中位线定理,熟练掌握矩形的性质,由三角形的中位线定理求出EF长是解决问题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、见解析;,证明见解析
    【解析】
    (1)由旋转性质知∠BPN=∠CPD,再由∠PCD+∠BCP=∠PBN+∠BCP=90°知∠PCD=∠PBN,从而得证;
    (2)先证△MPB∽△BPC得再由△PBN∽△PCD知从而得根据BC=CD可得答案.
    【详解】
    证明:由旋转可得.
    四边形是正方形,



    证明:

    由可知
    本题考查的是相似三角形的综合问题,解题的关键是掌握旋转变换的性质、相似三角形的判定与性质及正方形的性质等知识点,熟练掌握相关知识是解题的关键.
    15、(1)过A,B两点的直线解析式为y=2x+3;
    (2)△ABP的面积为或.
    【解析】
    (1)设直线l的解析式为y=ax+b,把A、B的坐标代入求出即可;
    (2)分为两种情况:①当P在x轴的负半轴上时,②当P在x轴的正半轴上时,求出AP,再根据三角形面积公式求出即可.
    【详解】
    解:(1)设过A,B两点的直线解析式为y=ax+b(a≠0),
    则根据题意,得,
    解得:,
    则过A,B两点的直线解析式为y=2x+3;
    (2)设P点坐标为(x,0),依题意得x=±3,
    ∴P点坐标分别为P1(3,0),P2(﹣3,0),
    =,
    =,
    故△ABP的面积为或.
    本题考查了用待定系数法求一次函数的解析式,三角形的面积,解二元一次方程组等知识点的应用,关键是能求出符合条件的两种情况.
    16、(1)BC=15;(2)S△BCD=2.
    【解析】
    (1)根据勾股定理可求得BC的长.
    (2)根据勾股定理的逆定理可得到△BCD也是直角三角形,根据三角形的面积即可得到结论.
    【详解】
    (1)∵∠A=90°,AB=9,AC=12
    ∴BC==15,
    (2)∵BC=15,BD=8,CD=1
    ∴BC2+BD2=CD2
    ∴△BCD是直角三角形
    ∴S△BCD=×15×8=2.
    本题考查了勾股定理、勾股定理的逆定理;熟练掌握勾股定理和勾股定理的逆定理,通过作辅助线证明三角形是直角三角形是解决问题的关键.
    17、(1)见解析;(2)见解析;(3)见解析
    【解析】
    解:
    (1)设按优惠方法①购买需用y1元,按优惠方法②购买需用y2元
    y1=(x−4)×5+20×4=5x+60,
    y2=(5x+20×4)×0.9=4.5x+72.
    (2)分为三种情况:①∵设y1=y2,
    5x+60=4.5x+72,
    解得:x=24,
    ∴当x=24时,选择优惠方法①,②均可;
    ②∵设y1>y2,即5x+60>4.5x+72,
    ∴x>24.当x>24整数时,选择优惠方法②;
    ③当设y1

    相关试卷

    2024-2025学年江苏省苏州平江中学数学九上开学质量检测模拟试题【含答案】:

    这是一份2024-2025学年江苏省苏州平江中学数学九上开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省南京一中学数学九上开学教学质量检测试题【含答案】:

    这是一份2024-2025学年江苏省南京一中学数学九上开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,九月份共生产零件万个,设八,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省溧水高级中学数学九上开学达标检测模拟试题【含答案】:

    这是一份2024-2025学年江苏省溧水高级中学数学九上开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map