终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024-2025学年江苏省苏州市园区第十中学数学九上开学学业水平测试模拟试题【含答案】

    立即下载
    加入资料篮
    2024-2025学年江苏省苏州市园区第十中学数学九上开学学业水平测试模拟试题【含答案】第1页
    2024-2025学年江苏省苏州市园区第十中学数学九上开学学业水平测试模拟试题【含答案】第2页
    2024-2025学年江苏省苏州市园区第十中学数学九上开学学业水平测试模拟试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年江苏省苏州市园区第十中学数学九上开学学业水平测试模拟试题【含答案】

    展开

    这是一份2024-2025学年江苏省苏州市园区第十中学数学九上开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列计算:,其中结果正确的个数为( )
    A.1B.2C.3D.4
    2、(4分)如图,PA、PB分别与⊙O相切于点A、B,若∠P=50°,则∠C的值是( )
    A.50°B.55°C.60°D.65°
    3、(4分)如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为( )
    A.130°B.150°C.160°D.170°
    4、(4分)在下列命题中,是假命题的个数有( )
    ①如果,那么. ② 两条直线被第三条直线所截,同位角相等
    ③面积相等的两个三角形全等 ④ 三角形的一个外角等于不相邻的两个内角的和.
    A.3个B.2个C.1个D.0个
    5、(4分)如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是( )
    A.x2+9x-8=0B.x2-9x-8=0
    C.x2-9x+8=0D.2x2-9x+8=0
    6、(4分)若是关于的一元二次方程的一个解,则2035-2a+b的值( )
    A.17B.1026C.2018D.4053
    7、(4分)如图①,在边长为4的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是( )
    A.2cmB.3cmC.4cmD.5cm
    8、(4分)已知点在轴上,则点的坐标是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)对于实数x我们规定[x]表示不大于x的最大整数,例如[1.8]=1,[7]=7,[﹣5]=﹣5,[﹣2.9]=﹣3,若[]=﹣2,则x的取值范围是_____.
    10、(4分)如图,四边形ACDF是正方形,和都是直角,且点三点共线,,则阴影部分的面积是__________.
    11、(4分)将直线向上平移个单位,得到直线_______。
    12、(4分)如图,点在双曲线上,为轴上的一点,过点作轴于点,连接、,若的面积是3,则__.
    13、(4分)在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高度为 1m,那么它的下部应设计的高度为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知:如图,在中,,以点为圆心,的长为半径画弧,交线段于点,以点为圆心,长为半径画弧,交线段与点.
    (1)根据题意用尺规作图补全图形(保留作图痕迹);
    (2)设
    ①线段的长度是方程的一个根吗?并说明理由.
    ②若线段,求的值.
    15、(8分)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:
    (1)本次接受随机抽样调查的学生人数为 ,图①中m的值是 ;
    (2)求本次调查获取的样本数据的平均数、众数和中位数;
    (3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.
    16、(8分)已知关于x的一元二次方程(m为常数)
    (1)求证:不论m为何值,方程总有两个不相等的实数根;
    (2)若方程有一个根是2,求m的值及方程的另一个根.
    17、(10分)(1)计算:
    (2)解方程:
    18、(10分)为了倡导“全民阅读”,某校为调査了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成统计图表如下:
    根据以上信息,解答下列问题
    (1)共抽样调查了 名学生,a= ;
    (2)在扇形统计图中,“D”对应扇形的圆心角为 ;
    (3)若该校有2000名学生,请估计全校学生中家庭藏书超过60本的人数.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A所代表的正方形的边长是_____.
    20、(4分)若一个三角形的三边长为3、4、x,则使此三角形是直角三角形的x的值是__________.
    21、(4分)__________.
    22、(4分)如图的直角三角形中未知边的长x=_______.
    23、(4分)如图,为直角三角形,其中,则的长为__________________________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)(1)如图,在平行四边形中,过点作 于点 ,交 于点 ,过点 作 于点 ,交 于点 .
    ①求证:四边形 是平行四边形;
    ②已知,求的长.
    (2)已知函数.
    ①若函数图象经过原点,求的值
    ②若这个函数是一次函数,且随着的增大而减小,求的取值范围
    25、(10分)如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后,分别位于点Q、R处,且相距30海里,如果知道“远航”号沿北偏东方向航行,请求出“海天”号的航行方向?
    26、(12分)为了迎接“六一”国际儿童节,某童装品牌专卖店准备购进甲、乙两种童装,这两种童装的进价和售价如下表:
    如果用5000元购进甲种童装的数量与用6000元购进乙种童装的数量相同.
    (1)求m的值;
    (2)要使购进的甲、乙两种童装共200件的总利润(利润=售价﹣进价)不少于8980元,且甲种童装少于100件,问该专卖店有哪几种进货方案?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据二次根式的运算法则即可进行判断.
    【详解】
    ,正确;正确;正确;,正确,故选D.
    此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质:;
    .
    2、D
    【解析】
    连接OA、OB,由已知的PA、PB与圆O分别相切于点A、B,根据切线的性质得到OA⊥AP,OB⊥PB,从而得到∠OAP=∠OBP=90°,然后由已知的∠P的度数,根据四边形的内角和为360°,求出∠AOB的度数,最后根据同弧所对的圆周角等于它所对圆心角度数的一半即可得到∠C的度数.
    【详解】
    解:连接OA、OB,
    ∵PA、PB与圆O分别相切于点A、B,
    ∴OA⊥AP,OB⊥PB,
    ∴∠OAP=∠OBP=90°,又∠P=50°,
    ∴∠AOB=360°-90°-90°-50°=130°,
    又∵∠ACB和∠AOB分别是弧AB所对的圆周角和圆心角,
    ∴∠C=∠AOB=×130°=65°.
    故选:D.
    此题考查了切线的性质,以及圆周角定理.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题,同时要求学生掌握同弧所对的圆周角等于所对圆心角的一半.
    3、C
    【解析】
    根据平行四边形对角相等、邻角互补,得∠ABC=60°,∠DCB=120°,再由∠A′DC=10°,可运用三角形外角求出∠DA′B=130°,再根据旋转的性质得到∠BA′E′=∠BAE=30°,从而得到答案.
    【详解】
    ∵四边形ABCD是平行四边形,∠ADC=60°,
    ∴∠ABC=60°,∠DCB=120°,
    ∵∠ADA′=50°,
    ∴∠A′DC=10°,
    ∴∠DA′B=130°,
    ∵AE⊥BC于点E,
    ∴∠BAE=30°,
    ∵△BAE顺时针旋转,得到△BA′E′,
    ∴∠BA′E′=∠BAE=30°,
    ∴∠DA′E′=∠DA′B+∠BA′E′=160°.
    故选C.
    考点:旋转的性质;平行四边形的性质.
    4、A
    【解析】
    两个数的平方相等,则两个数相等或互为相反数;两条直线平行,同位角相等;三角形面积相等,但不一定全等;根据三角形的外角性质得到三角形的一个外角等于与它不相邻的两个内角之和,根据以上结论判断即可.
    【详解】
    解:①、两个数的平方相等,则两个数相等或互为相反数,例如(-1)2=12,则-1≠1.故错误;
    ②、只有两直线平行时,同位角相等,故错误;
    ③、若两个三角形的面积相等,则两个三角形不一定全等.故错误;
    ④、三角形的一个外角等于与它不相邻的两个内角之和,故正确;
    故选:A.
    本题主要考查平行线的性质,平方,全等三角形的判定,三角形的外角性质,命题与定理等知识点的理解和掌握,理解这些性质是解题的关键.
    5、C
    【解析】
    解:设人行道的宽度为x米,根据题意得,
    (18﹣3x)(6﹣2x)=61,
    化简整理得,x2﹣9x+8=1.
    故选C.
    6、B
    【解析】
    把x=2代入方程得2a-b=1009,再代入 ,可求得结果.
    【详解】
    因为是关于x的一元二次方程的一个解,
    所以,4a-2b-2018=0,
    所以,2a-b=1009,
    所以,=2035-(2a-b)=2035-1009=1026.
    故选B.
    本题主要考查一元二次方程的根的意义.
    7、B
    【解析】
    试题解析:点P运动2.5秒时P点运动了5cm,
    CP=8-5=3cm,
    由勾股定理,得
    PQ=cm,
    故选B.
    考点:动点函数图象问题.
    8、A
    【解析】
    直接利用关于x轴上点的坐标特点得出m的值,进而得出答案.
    【详解】
    解:点在轴上,

    解得:,

    则点的坐标是:.
    故选:A.
    此题主要考查了点的坐标,正确得出m的值是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、﹣9≤x<﹣1
    【解析】
    根据题意可以列出相应的不等式,解不等式求出x的取值范围即可得答案.
    【详解】
    ∵[x]表示不大于x的最大整数,[]=﹣2,
    ∴﹣2≤<﹣1,
    解得:﹣9≤x<﹣1.
    故答案为:﹣9≤x<﹣1.
    本题考查了一元一次不等式组和一元一次不等式组的整数解的应用,能根据题意得出关于x的不等式组是解题关键.
    10、8
    【解析】
    【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.
    【详解】∵四边形ACDF是正方形,
    ∴AC=FA,∠CAF=90°,
    ∴∠CAE+∠FAB=90°,
    ∵∠CEA=90°,∴∠CAE+∠ACE=90°,
    ∴∠ACE=∠FAB,
    又∵∠AEC=∠FBA=90°,
    ∴△AEC≌△FBA,
    ∴CE=AB=4,
    ∴S阴影==8,
    故答案为8.
    【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.
    11、
    【解析】
    根据平移k不变,b值加减即可得出答案.
    【详解】
    平移后解析式为:y=2x−1+4=2x+3,
    故答案为:y=2x+3
    此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质
    12、-6
    【解析】
    连结OA,如图,利用三角形面积公式得到S△OAC=S△CAB=3,再根据反比例函数的比例系数k的几何意义得到,然后去绝对值即可得到满足条件的k的值.
    【详解】
    解:连结,如图,
    轴,


    而,



    故答案为:.
    本题考查了反比例函数的比例系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
    13、
    【解析】
    设雕像的下部高为x m,则上部长为(1-x)m,然后根据题意列出方程求解即可.
    【详解】
    解:设雕像的下部高为x m,则题意得:,
    整理得:,
    解得: 或 (舍去);
    ∴它的下部应设计的高度为.
    故答案为:.
    本题考查了黄金分割,解题的关键在于读懂题目信息并列出比例式,难度不大.
    三、解答题(本大题共5个小题,共48分)
    14、(1)详见解析;(2)①线段的长度是方程的一个根,理由详见解析;②
    【解析】
    (1)根据题意,利用尺规作图画出图形即可;
    (2)①根据勾股定理求出AD,然后把AD的值代入方程,即可得到答案;
    ②先得到出边长的关系,然后根据勾股定理,列出方程,解方程后得到答案.
    【详解】
    (1)解:作图,如图所示:
    (2)解:①线段的长度是方程的一个根.
    理由如下:依题意得,
    在中,

    线段的长度是方程的一个根
    ②依题意得:
    在中,
    本题考查的是基本作图,勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.
    15、(1)50; 1;(2)2;3;15;(3)608人.
    【解析】
    (1)根据条形统计图即可得出样本容量:4+2+12+3+8=50(人);根据扇形统计图得出m的值:;
    (2)利用平均数、中位数、众数的定义分别求出即可.
    (3)根据样本中捐款3元的百分比,从而得出该校本次活动捐款金额为3元的学生人数.
    【详解】
    解:(1)根据条形图4+2+12+3+8=50(人),
    m=30-20-24-2-8=1;
    故答案为:50; 1.
    (2)∵,
    ∴这组数据的平均数为:2.
    ∵在这组样本数据中,3出现次数最多为2次,
    ∴这组数据的众数为:3.
    ∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,
    ∴这组数据的中位数为:,
    (3)∵在50名学生中,捐款金额为3元的学生人数比例为1%,
    ∴由样本数据,估计该校1900名学生中捐款金额为3元的学生人数有1900×1%=608人.
    ∴该校本次活动捐款金额为3元的学生约有608人.
    此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
    16、 (1)见解析;
    (2) 即m的值为0,方程的另一个根为0.
    【解析】
    (1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m2+4>0,则方程有两个不相等实数解,于是可判断不论m为何值,方程总有两个不相等的实数根;
    (2)设方程的另一个根为t,利用根与系数的关系得到2+t= ,2t=m,最终解出关于t和m的方程组即可.
    【详解】
    (1)证明:
    △=(m+2)2−4×1⋅m=m2+4,
    ∵无论m为何值时m2≥0,
    ∴m2+4≥4>0,
    即△>0,
    所以无论m为何值,方程总有两个不相等的实数根.
    (2)设方程的另一个根为t,
    根据题意得2+t= ,2t=m,
    解得t=0,
    所以m=0,
    即m的值为0,方程的另一个根为0.
    本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t,用根于系数关系列出方程组,在求解.
    17、(1);(2).
    【解析】
    (1)先把分子分母因式分解,再把计算乘法,最后相加减;
    (2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】
    解:(1)原式
    (2)去分母:
    .
    经检验是原方程的根
    所以,原方程的解是
    此题考查了解分式方程,熟练掌握运算法则是解本题的关键.
    18、(1)200,64;(2)126°;(3)1200人.
    【解析】
    (1)共抽样调查了50÷25%=200(名),200﹣(16+50+70)=64(名);
    (2)“D”对应扇形的圆心角360°×=126°;
    (3)估计全校学生中家庭藏书超过60本的人数为(50+70)=1200(人).
    【详解】
    解:(1)50÷25%=200(名),
    200﹣(16+50+70)=64(名)
    故答案为:200,64;
    (2)“D”对应扇形的圆心角360°×=126°.
    故答案为:126°;
    (3)(50+70)=1200(人),
    答:估计全校学生中家庭藏书超过60本的人数为1200人.
    本题考查了扇形统计图的相关知识,正确读懂图表是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据正方形的性质可得出面积为100、36的正方形的边长,再利用勾股定理即可求出字母A所代表的正方形的边长,此题得解.
    【详解】
    面积是100的正方形的边长为10,面积是36的正方形的边长为6,∴字母A所代表的正方形的边长==1.
    故答案为:1.
    本题考查了勾股定理以及正方形的性质,牢记“在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方”是解题的关键.
    20、1或 .
    【解析】
    分析: 由于直角三角形的斜边不能确定,故应分4是斜边或直角边两种情况进行讨论.
    详解:当4是直角三角形的斜边时,32+x2=42,解得x=;
    当4是直角三角形的直角边时,32+42=x2,解得x=1.
    故使此三角形是直角三角形的x的值是1或.
    故答案为: 1或.
    点睛:本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.
    21、
    【解析】
    把变形为,逆用积的乘方法则计算即可.
    【详解】
    原式=
    =
    =.
    故答案为:.
    本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    22、
    【解析】
    根据勾股定理求解即可.
    【详解】
    x=.
    故答案为:.
    本题考查了勾股定理,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.
    23、.
    【解析】
    由∠B=90°,∠BAD=45°,根据直角三角形两锐角互余求得∠BDA=45°,因此AB=BD,由∠DAC=15°,根据三角形外角性质可求得∠C=30°,由AC=2,根据直角三角形中30°的角所对的直角边等于斜边的一半,求得AB=1,即BD=1,根据勾股定理求得BC=,从而得到CD的长.
    【详解】
    解:∵∠B=90°,∠BAD=45°,
    ∴∠BDA=45°,AB=BD,
    ∵∠DAC=15°,
    ∴∠C=30°,
    ∴AB=BD=AC=×2=1,
    ∴BC===,
    ∴CD=BC-BD=-1.
    故答案为-1.
    本题考查了直角三角形两锐角互余的性质,30°的角所对的直角边等于斜边的一半,勾股定理等知识.
    二、解答题(本大题共3个小题,共30分)
    24、(1)①详见解析;②13;(2)①m=3;②
    【解析】
    (1)①只要证明DN∥BM,DM∥BN即可;
    ②只要证明△CEM≌△AFN,可得FN=EM=5,在Rt△AFN中,根据勾股定理AN=即可解决问题;
    (2)①根据待定系数法,只需把原点代入即可求解;
    ②直线y=kx+b中,y随x的增大而减小说明k<1.
    【详解】
    (1)①ABCD是平行四边形,
    又 ,
    ∴DN∥BM,
    ∴四边形 是平行四边形;
    ②解:∵四边形BMDN是平行四边形,
    ∴DM=BN,
    ∵CD=AB,CD∥AB,
    ∴CM=AN,∠MCE=∠NAF,
    ∵∠CEM=∠AFN=91°,
    ∴△CEM≌△AFN(AAS),
    ∴FN=EM=5,
    在Rt△AFN中,CM=;
    (2)①,∵函数图象经过原点
    代入解析式, 即m-3=1,m=3;
    ②根据y随x的增大而减小说明k<1,
    即:
    解得:
    ∴的取值范围是:.
    本题考查一次函数的性质,平行四边形的性质和判定、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    25、 “海天”号的航行方向是沿北偏西方向航行
    【解析】
    直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角得出答案.
    【详解】
    由题意可得:RP=18海里,PQ=24海里,QR=30海里,
    ∵182+242=302,
    ∴△RPQ是直角三角形,
    ∴∠RPQ=90°,
    ∵“远航”号沿北偏东60°方向航行,
    ∴∠RPN=30°,
    ∴“海天”号沿北偏西30°方向航行.
    此题主要考查了勾股定理的逆定理以及解直角三角形的应用,正确得出各线段长是解题关键.
    26、(1)m=100(2)两种方案
    【解析】
    (1)用总价除以单价表示出购进童装的数量,根据两种童装的数量相等列出方程求解即可;
    (2)设购进甲种童装x件,表示出乙种童装(200-x)件,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据童装的件数是正整数解答;设总利润为W,表示出利润,求得最值即可.
    【详解】
    (1)根据题意可得:,
    解得:m=100,
    经检验m=100是原方程的解;
    (2)设甲种童装为x件,可得:,
    解得:98≤x<100,
    因为x取整数,
    所以有两种方案:
    方案一:甲98,乙102;
    方案二:甲99,乙101;
    本题考查了分式方程的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系,解决问题.
    题号





    总分
    得分
    价格


    进价(元/件)
    m
    m+20
    售价(元/件)
    150
    160

    相关试卷

    2024-2025学年江苏省无锡市惠山区九上数学开学学业水平测试模拟试题【含答案】:

    这是一份2024-2025学年江苏省无锡市惠山区九上数学开学学业水平测试模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省苏州市园区第十中学数学九上开学复习检测模拟试题【含答案】:

    这是一份2024-2025学年江苏省苏州市园区第十中学数学九上开学复习检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省苏州工业园区第十中学九上数学开学经典模拟试题【含答案】:

    这是一份2024-2025学年江苏省苏州工业园区第十中学九上数学开学经典模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map