2024-2025学年江苏省东台市实验中学教育集团数学九年级第一学期开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在圆的周长C=2πR中,常量与变量分别是( )
A.2是常量,C、π、R是变量B.2π是常量,C,R是变量
C.C、2是常量,R是变量D.2是常量,C、R是变量
2、(4分)在一个不透明的口袋中装有红、黄、蓝三种颜色的球,如果口袋中有 5 个红球,且摸出红球的概率为,那么袋中总共球的个数为()
A.15 个B.12 个C.8 个D.6 个
3、(4分)已知实数,在数轴上的位置如图所示,化简:的结果是( )
A.B.
C.D.
4、(4分)化简的结果是
A.+1B.C.D.
5、(4分)下列图形中是中心对称图形,但不是轴对称图形的是( ).
A.正方形B.菱形C.矩形D.平行四边形
6、(4分)关于的方程有两个不相等的实根、,且有,则的值是( )
A.1B.-1C.1或-1D.2
7、(4分)下图表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数,且mn0)的大致图像是( )
A.B.
C.D.
8、(4分)后面的式子中(1);(2);(3);(4);(5);(6);二次根式的个数有( ).
A.2个B.3个C.4个D.5个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)小玲在一次班会中参加知识抢答活动,现有语文题道,数学题道,综合题道,她从中随机抽取道,抽中数学题的概率是_________.
10、(4分) 已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,BP=.下列结论:
①△APD≌△AEB;②点B到直线AE的距离为;
③S△APD+S△APB=+;④S正方形ABCD=4+.
其中正确结论的序号是_____.
11、(4分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_____.
12、(4分)如图,在菱形ABCD中,∠=∠EAF=,∠BAE=,则∠CEF=________.
13、(4分)某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)反比例函数的图象经过、、两点,试比较m、n大小.
15、(8分)如图,正方形,点为对角线上一个动点,为边上一点,且.
(1)求证:;
(2)若四边形的面积为25,试探求与满足的数量关系式;
(3)若为射线上的点,设,四边形的周长为,且,求与的函数关系式.
16、(8分)(1)如图1,观察函数y=|x|的图象,写出它的两条的性质;
(2)在图1中,画出函数y=|x-3|的图象;
根据图象判断:函数y=|x-3|的图象可以由y=|x|的图象向 平移 个单位得到;
(3)①函数y=|2x+3|的图象可以由y=|2x|的图象向 平移 单位得到;
②根据从特殊到一般的研究方法,函数y=|kx+3|(k为常数,k≠0)的图象可以由函数y=|kx|(k为常数,k≠0)的图象经过怎样的平移得到.
17、(10分)如图,在中,,将绕点A逆时针旋转,得到,使得点B、C、D恰好在同一条直线上,求的度数.
18、(10分)如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.
(1)求∠ABC的度数;
(2)如果AC=4,求DE的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为 .
20、(4分)已知关于X的一元二次方程有实数根,则m的取值范围是____________________
21、(4分)一组数据3,2,4,5,2的众数是______.
22、(4分)对于代数式m,n,定义运算“※”:m※n=(mn≠0),例如:4※2=.若(x﹣1)※(x+2)=,则2A﹣B=_____.
23、(4分)方程x2=2x的解是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E作EF∥CD交BC的延长线于点F,连接CD.
(1)求证:DE=CF;
(2)求EF的长.
25、(10分)如图,等腰直角三角形中,,点是斜边上的一点,将沿翻折得,连接,若是等腰三角形,则的长是______.
26、(12分)教材第97页在证明“两边对应成比例且夹角对应相等的两个三角形相似”(如图,已知,求证:)时,利用了转化的数学思想,通过添设辅助线,将未知的判定方法转化为前两节课已经解决的方法(即已知两组角对应相等推得相似或已知平行推得相似).利用上述方法完成这个定理的证明.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据变量常量的定义在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,可求解.
【详解】
在圆的周长公式中中,C与r是改变的,π是不变的;
所以变量是C,R,常量是2π.
故答案选B
本题考查了变量与常量的知识,属于基础题,正确理解变量与常量的概念是解题的关键.
2、A
【解析】
根据红球的概率公式列出方程求解即可.
【详解】
解:根据题意设袋中共有球m个,则
所以m=1.
故袋中有1个球.
故选:A.
本题考查了随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
3、B
【解析】
直接利用数轴结合二次根式的性质化简得出答案.
【详解】
解:由数轴可得:-1<a<0,0<b<1,
故应选B
本题主要考查了二次根式的性质与化简,解题关键是根据字母数字范围正确化简二次根式.
4、D
【解析】
试题分析:.故选D.
5、D
【解析】
试题分析:根据中心对称图形与轴对称图形的概念依次分析即可.
正方形、菱形、矩形均既是轴对称图形又是中心对称图形,平行四边形只是中心对称图形,
故选D.
考点:本题考查的是中心对称图形与轴对称图形
点评:解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
6、B
【解析】
根据根的判别式及一元二次方程的定义求得a的取值范围,再根据一元二次方程根与系数的关系求得的值,再利用列出以a为未知数的方程,解方程求得a值,由此即可解答.
【详解】
∵关于的方程有两个不相等的实根、,
∴△=(3a+1)2-8a(a+1)=(a-1)2>0,, a≠0,
∴a≠1且a≠0 ,
∵,
∴,
解得a=±1,
∴a=-1.
故选B.
本题主要考查了根与系数的关系、根的判别式,利用根的判别式确定a的取值及利用根与系数的关系列出方程求得a的值是解决问题的关键.
7、C
【解析】
根据一次函数图像与系数的关系以及正比例函数图像与系数的关系逐一对各选项进行判断,然后进一步得出答案即可.
【详解】
A:由一次函数图像可知:m>0,n>0,则mn>0,由正比例函数图像可得:mn<0,互相矛盾,故该选项错误;
B:由一次函数图像可知:m>0,n<0,则此时mn<0,由正比例函数图像可得:mn>0,互相矛盾,故该选项错误;
C:由一次函数图像可知:m﹤0,n>0,则此时mn﹤0,由正比例函数图像可得:mn<0,故该选项正确;
D:由一次函数图像可知:m﹤0,n﹥0,则此时mn<0,由正比例函数图像可得:mn>0,互相矛盾,故该选项错误;
故选:C.
本题主要考查了正比例函数图像以及一次函数图像与系数的关系,熟练掌握相关概念是解题关键.
8、B
【解析】
根据二次根式的定义:一般地,我们把形如的式子叫做二次根式可得答案.
【详解】
解:根据二次根式的定义:(1);(3);(5)是二次根式,而(2)中被开方数-3<0,不是二次根式,(4)是立方根,不是二次根式,(6)中因,故被开方数,不是二次根式;综上只有3个是二次根式;
故选B.
此题主要考查了二次根式定义,关键是掌握被开方数是非负数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.
【详解】
解:抽中数学题的概率为
,
故答案为:.
本题考查了概率,正确利用概率公式计算是解题的关键.
10、①③④
【解析】
由题意可得△ABE≌△APD,故①正确,可得∠APD=∠AEB=135°,则∠PEB=90°,由勾股定理可得BE,作BM⊥AE于M,可得△BEM是等腰直角三角形,
可得BM=EM=,故②错误,根据面积公式即可求S△APD+S△APB,S正方形ABCD,根据计算结果可判断.
【详解】
解:∵正方形ABCD
∴AB=AD,∠BAD=90°
又∵∠EAP=90°
∴∠BAE=∠PAD,AE=AP,AB=AD
∴△AEB≌△APD故①正确
作BM⊥AE于M,
∵AE=AP=1,∠EAP=90°
∴EP=,∠APE=45°=∠AEP
∴∠APD=135°
∵△AEP≌△APD,
∴∠AEB=135°
∴∠BEP=90°
∴BE
∵∠M=90°,∠BEM=45°
∴∠BEM=∠EBM=45°
∴BE=MB 且BE=,
∴BM=ME=,故②错误
∵S△APD+S△APB=S四边形AMBP﹣S△BEM
故③正确
∵S正方形ABCD=AB2=AE2+BE2
∴S正方形ABCD 故④正确
∴正确的有①③④
本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,关键是构造直角三角形求出点B到直线AE的距离.
11、1.2
【解析】
根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.
【详解】
∵在△ABC中,AB=3,AC=4,BC=5,
∴AB2+AC2=BC2,
即∠BAC=90°.
又PE⊥AB于E,PF⊥AC于F,
∴四边形AEPF是矩形,
∴EF=AP.
∵M是EF的中点,
∴AM=EF=AP.
因为AP的最小值即为直角三角形ABC斜边上的高,即2.4,
∴AM的最小值是1.2.
本题考查了勾股定理, 矩形的性质,熟练的运用勾股定理和矩形的性质是解题的关键.
12、20°
【解析】
首先证明△ABE≌△ACF,然后推出AE=AF,证明△AEF是等边三角形,得∠AEF=60°,最后求出∠CEF的度数.
【详解】
解:连接AC, 在菱形ABCD中,AB=CB, ∵=60°,
∴∠BAC=60°,△ABC是等边三角形,
∵∠EAF=60°, ∴∠BAC-∠EAC=∠EAF-∠EAC,
即:∠BAE=∠CAF,
在△ABE和△ACF中,
,
∴△ABE≌△ACF(ASA),
∴AE=AF, 又∠EAF=∠D=60°,
则△AEF是等边三角形, ∴∠AEF=60°,
又∠AEC=∠B+∠BAE=80°,
则∠CEF=80°-60°=20°.
故答案为:20°.
此题主要考查菱形的性质和等边三角形的判定以及三角形的内角和定理,有一定的难度,解答本题的关键是正确作出辅助线,然后熟练掌握菱形的性质.
13、100(1+x)2=1
【解析】分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.
详解:设该果园水果产量的年平均增长率为x,根据题意,得:
100(1+x)2=1,
故答案为:100(1+x)2=1.
点睛:本题考查了由实际问题抽象出一元二次方程;得到2013年产量的等量关系是解决本题的关键.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
根据反比例函数的图象经过可求得k的值,即可得反比例函数的解析式,再将、代入反比例函数的解析式,求得m、n的值,比较即可解答.
【详解】
∵反比例函数,它的图象经过,,,
∴,
将B,C两点代入反比例函数得,,,
∴.
本题考查了反比例函数图象上点的坐标特征,根据反比例函数图象上点的坐标特征求得反比例函数的解析式是解决问题的关键.
15、 (1)见解析;(2) ;(3) .
【解析】
(1)如图1中,作PE⊥BC于E,PF⊥CD于F.只要证明△PEB≌△PFQ即可解决问题;
(2)根据S四边形BCQP=S四边形CEPF即可解决问题;
(3)如图2,过P做EF∥AD分别交AB和CD于E、F,易知,由,推出,由,推出,由此即可解决问题.
【详解】
(1)如图1中,作于,于,
四边形是正方形,
,于,于,
,
,
四边形是矩形,,
四边形是正方形,
,
,
,
,
;
(2)如图1中,由(1)可知,四边形是正方形,
,,,
,
,
,
;
(3)如图2,过做分别交和于、,
,
,
,
,
,
,
.
本题考查的是四边形综合题,涉及了全等三角形的判定和性质、正方形的性质和判定等知识,正确添加辅助线,灵活运用所学知识是解题的关键.
16、(1)答案见解析;(2)画图见解析,右,3;(3)①左, ②答案见解析.
【解析】
(1)根据函数的图象得到函数的性质即可;
(2)画出函数y=|x-3|的图象根据函数y=|x-3|的图象即可得到结论;
(3)①根据(2)的结论即可得到结果;
②当k>0时或k<0时,向左或向右平移个单位长度.
【详解】
解:(1)①函数y=|x|的图象关于y轴对称;②当x<0时,y随x的增大而减小,当x>0时,y随x的增大而增大;
(2)函数y=|x-3|的图象如图所示:
函数y=|x-3|的图象可以由y=|x|的图象向右平移3个单位得到;
(3)①函数y=|2x+3|的图象可以由y=|2x|的图象向左平移单位得到;
②当k>0时,向左平移个单位长度;
当k<0时,向右平移个单位长度.
本题考查了一次函数图象与几何变换,一次函数的图象,一次函数的性质,正确的理解题意是解题的关键.
17、
【解析】
由旋转的性质得出∠BAD=150°,AD=AB,∠E=∠ACB,由点B,C,D恰好在同一直线上,则△BAD是顶角为150°的等腰三角形,求出∠B=15°,由三角形内角和定理即可得出结果.
【详解】
解:∵将绕点A逆时针旋转150°,得到,
.
∵点B、C、D恰好在同一条直线上
是顶角为150°的等腰三角形,
,
,
.
此题主要考查了旋转的性质、等腰三角形的判定和性质、三角形的内角和定理等知识;判断出三角形ABD是等腰三角形是解本题的关键.
18、(1);(2).
【解析】
试题分析:(1)要想求出∠ABC的度数,须知道∠DAB的度数,由菱形性质和线段垂直平分线的性质可证出△ABD是等边三角形,∴∠DAB=60°,于是;(2)先证△ABO≌△DBE,从而知道DE=AO,AO=AC的一半,于是DE的长就知道了.
试题解析:(1)∵四边形ABCD是菱形,,∥,∴.∵为的中点,,∴.∴.∴ △为等边三角形.∴.∴.(2)∵四边形是菱形, ∴于,∵于,∴.∵∴.∴.
考点:1.菱形性质;2.线段垂直平分线性质;3.等边三角形的判定与性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(2.5,4)或(3,4)或(2,4)或(8,4).
【解析】
试题解析:∵四边形OABC是矩形,
∴∠OCB=90°,OC=4,BC=OA=10,
∵D为OA的中点,
∴OD=AD=5,
①当PO=PD时,点P在OD得垂直平分线上,
∴点P的坐标为:(2.5,4);
②当OP=OD时,如图1所示:
则OP=OD=5,PC==3,
∴点P的坐标为:(3,4);
③当DP=DO时,作PE⊥OA于E,
则∠PED=90°,DE==3;
分两种情况:当E在D的左侧时,如图2所示:
OE=5-3=2,
∴点P的坐标为:(2,4);
当E在D的右侧时,如图3所示:
OE=5+3=8,
∴点P的坐标为:(8,4);
综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4)
考点:1.矩形的性质;2.坐标与图形性质;3.等腰三角形的判定;4.勾股定理.
20、m≤3且m≠2
【解析】
试题解析:∵一元二次方程有实数根
∴4-4(m-2)≥0且m-2≠0
解得:m≤3且m≠2.
21、1
【解析】
从一组数据中找出出现次数最多的数就是众数,发现1出现次数最多,因此1是众数.
【详解】
解:出现次数最多的是1,因此众数是1,
故答案为:1.
本题考查了众数的意义,从一组数据中找到出现次数最多的数就是众数.
22、-1
【解析】
由可得答案.
【详解】
由题意,得:
故答案为:﹣1.
本题主要考查分式的混合运算,解题的关键是掌握分式的加减混合运算顺序和运算法则.
23、x1=0, x2=2
【解析】
利用因式分解法解方程即可得到答案.
【详解】
解:原方程化为:
所以:
所以: 或
解得:
故答案为:
本题考查的是一元二次方程的解法,熟练掌握一元二次方程的解法是关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)见解析;(2).
【解析】
(1)直接利用三角形中位线定理得出DE∥BC,再利用平行四边形的判定方法得出答案;
(2)利用等边三角形的性质结合平行四边形的性质得出DC=EF,进而求出答案.
【详解】
解:(1)∵D、E分别为AB、AC的中点,
∴DE∥BC,DE=BC,
∵EF∥CD
∴四边形DEFC是平行四边形,
∴DE=CF.
(2)∵四边形DEFC是平行四边形,
∴DC=EF,
∵D为AB的中点,等边△ABC的边长是2,
∴AD=BD=1,CD⊥AB,BC=2,
∴DC=EF=.
此题主要考查了等边三角形的性质以及平行四边形的判定与性质、三角形中位线定理等知识,正确掌握平行四边形的性质是解题关键.
25、或
【解析】
分两种情形:①如图1中,当ED=EA时,作DH⊥BC于H.②如图2中,当AD=AE时,分别求解.
【详解】
如图1中,当ED=EA时,作DH⊥BC于H.
∵CB=CA,∠ACB=90°,
∴∠B=∠CAB=45°,
由翻折不变性可知:∠CED=∠B=45°,
∴A,C,D,E四点共圆,
∵ED=EA,
∴∠ACE=∠ECD=∠BCD=30°,设BH=DH=x,则CH=x,
∵BC=,
∴x+x=,
∴x=.
∴BD=x=-1.
如图2中,当AD=AE时,同法可证:∠ACD=∠ACE,
∵∠BCD=∠DCE,
∴∠BCD=2∠ACD,
∴∠BCD=60°,设BH=DH=x,则CH=x,
∵BC=,
∴x+x=,
∴x=,
∴BD=x=3-.
综上所述,满足条件的BD的值为-1或3-.
故答案为:-1或3-.
本题考查翻折变换,等腰直角三角形的性质,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
26、见解析
【解析】
在AB上截取AG=DE,作GH∥BC,则可得△AGH∽△ABC,再由已知条件证明△AGH≌△DEF即可证明:△ABC∽△DEF.
【详解】
证明:在上截取,作.
.
.
∵,
∴,
∵,
∴,
∴.
本题考查了相似三角形的判定和性质以及全等三角形的判定,解题的关键是正确作出辅助线构造全等三角形.
题号
一
二
三
四
五
总分
得分
2024-2025学年江苏省东台市实验中学数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年江苏省东台市实验中学数学九上开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖南省娄底市实验中学九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年湖南省娄底市实验中学九年级数学第一学期开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河北石家庄28中学教育集团九年级数学第一学期开学复习检测模拟试题【含答案】: 这是一份2024-2025学年河北石家庄28中学教育集团九年级数学第一学期开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。