![2024-2025学年黑龙江齐齐哈尔市建华区数学九上开学监测试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16178160/0-1726872494557/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年黑龙江齐齐哈尔市建华区数学九上开学监测试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16178160/0-1726872494650/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年黑龙江齐齐哈尔市建华区数学九上开学监测试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16178160/0-1726872494670/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024-2025学年黑龙江齐齐哈尔市建华区数学九上开学监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在矩形中,,,分别在边上,. 将,分别沿着翻折后得到、. 若分别平分,则的长为( )
A.3B.4C.5D.7
2、(4分)如图,将绕点顺时针旋转得到.若点在同一条直线上,则的度数是( )
A.B.C.D.
3、(4分)下列调查的样本所选取方式,最具有代表性的是( )
A.在青少年中调查年度最受欢迎的男歌手
B.为了解班上学生的睡眠时间,调查班上学号为双号的学生的睡眠时间
C.为了解你所在学校的学生每天的上网时间,对八年级的同学进行调查
D.对某市的出租车司机进行体检,以此反映该市市民的健康状况
4、(4分)下列图形中,既是轴对称图图形又是中心对称图形的是( )
A.B.C.D.
5、(4分)若不等式组的解集为﹣1<x<1,则(a﹣3)(b+3)的值为( )
A.1B.﹣1C.2D.﹣2
6、(4分)如图,在平面直角坐标系中,OABC的顶点A在x轴上,定点B的坐标为(8,4),若直线经过点D(2,0),且将平行四边形OABC分割成面积相等的两部分,则直线DE的表达式是( )
A.y=x-2B.y=2x-4C.y=x-1D.y=3x-6
7、(4分)下列各式从左到右的变形中,是分解因式的是( )
A.B.
C.D.
8、(4分)如果不等式组的解集是,那么的取值范围是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图是一次函数y=kx+b的图象,当y<0时,x的取值范围是_________________.
10、(4分)要使代数式有意义,则的取值范围是________.
11、(4分)在平面直角坐标系中,已知点在第二象限,那么点在第_________象限.
12、(4分)如图,已知直线:与直线:相交于点,直线、分别交轴于、两点,矩形的顶点、分别在、上,顶点、都在轴上,且点与点重合,那么 __________________.
13、(4分)若点P(3,2)在函数y=3x-b的图像上,则b=_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)请阅读下列材料:
问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形,要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得,由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长,于是,画出如图②所示的分割线,拼出如图③所示的新正方形.
请你参考小东同学的做法,解决如下问题:
现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形,要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.(说明:直接画出图形,不要求写分析过程.)
15、(8分)如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,求图中阴影部分的面积.
16、(8分)已知直线的图象经过点和点
(1)求的值;
(2)求关于的方程的解
(3)若、为直线上两点,且,试比较、的大小
17、(10分)如图,△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
(1)画出把△ABC向下平移4个单位后的图形.
(2)画出将△ABC绕原点O按顺时针方向旋转90°后的图形.
(3)写出符合条件的以A、B、C、D为顶点的平行四边形的第四个顶点D的坐标.
18、(10分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.
(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?
(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.
①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?
②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为 .
20、(4分)如图,矩形ABCD中,AB=16cm,BC=8cm,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为______.
21、(4分)已知反比例函数的图象经过点,则b的值为______.
22、(4分)化成最简二次根式后与最简二次根式的被开方数相同,则a的值为______.
23、(4分)如图,四边形是正方形,点在上,绕点顺时针旋转后能够与重合,若,,试求的长是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知函数y=和y=,A(1,n)、B(m,4)两点均在函数y=的图像上,设两函数y=和y=的图像交于一点P.
(1)求实数m,n的值;
(2)求P,A,B三点构成的三角形PAB的面积.
25、(10分)如图,,,.求证:四边形是平行四边形.
26、(12分)西蜀图书室近日购进甲、乙两种图书,每本甲图书的进价比每本乙图书的进价高20元,花780元购进甲图书的数量与花540元购进乙图书的数量相同.
(1)求甲、乙两种图书每本的进价分别是多少元?
(2)西蜀图书室计划购进甲、乙两种图书共70本,总购书费用不超过4000元,则最多购进甲种图书多少本?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
如图作GM⊥AD于M交BC于N,作HT⊥BC于T.根据题意得到∠GAM=∠BAE=∠EAG=30°,根据三角函数的计算得到CT,即可解决问题.
【详解】
如图作GM⊥AD于M交BC于N,作HT⊥BC于T.
由题意:∠BAD=90°,∠BAE=∠EAG=∠GAM,
∴∠GAM=∠BAE=∠EAG=30°,
∵AB=AG=2,
∴AM=AG•cs30°=3,
同法可得CT=3,
易知四边形ABNM,四边形GHTN是矩形,
∴BN=AM=3,GH=TN=BC﹣BN﹣CT=10﹣6=4,
故选:B.
本题考查翻折变换,解直角三角形,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
2、B
【解析】
用旋转的性质可知△ACE是等腰直角三角形,由此即可解决问题.
【详解】
解:由题意:A,D,E共线,
由旋转可得:CA=CE,∠ACE=90°,
∴∠EAC=∠E=45°,
故选:B.
本题考查旋转变换,等腰直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
3、B
【解析】
试题解析:A. 只在青少年中调查不具有代表性,故本选项不符合题意;
B. 了解班上学生的睡眠时间.调查班上学号为双号的学生的睡眠时间,具有广泛性与代表性,故本选项符合题意;
C. 只向八年级的同学进行调查不具有代表性,故本选项不符合题意;
D. 反映该市市民的健康状况只对出租车司机调查不具有代表性,故本选项不符合题意.
故选B.
4、D
【解析】
结合轴对称图形和中心对称图形的定义求解观察各个图形,即可完成解答.
【详解】
A、不是轴对称图形,是中心对称图形,故A错误;
B、是轴对称图形,但不是中心对称图形,故B错误;
C、既不是轴对称图形,也不是中心对称图形,故C正确;
D、既是轴对称图形又是中心对称图形,故D正确.
故选D.
本题考查图形对称性的判断, 中心对称图形满足绕着中心点旋转180°后能与自身重合,而若一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形就是轴对称图形.
5、D
【解析】
试题分析:解不等式2x﹣a<1,得:x<,
解不等式x﹣2b>3,得:x>2b+3,
∵不等式组的解集为﹣1<x<1,
∴,
解得:a=1,b=﹣2,
当a=1,b=﹣2时,(a﹣3)(b+3)=﹣2×1=﹣2,
故选D.
考点:解一元一次不等式组
6、A
【解析】
过平行四边形的对称中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形对称中心的坐标,再利用待定系数法求一次函数解析式解答即可.
【详解】
解:∵点B的坐标为(8,4),
∴平行四边形的对称中心坐标为(4,1),
设直线DE的函数解析式为y=kx+b,
则,
解得,
∴直线DE的解析式为y=x-1.
故选:A.
本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.
7、B
【解析】
A、是整式乘法,不符合题意;B、是因式分解,符合题意;C、右边不是整式的积的形式,不符合题意;D、右边不是整式的积的形式,不符合题意,
故选B.
8、B
【解析】
先用含有m的代数式把原不等式组的解集表示出来,由题意不等式的解集为x>1,再根据求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)来求出m的范围.
【详解】
解:在中
由(1)得,x>1
由(2)得,x>m
根据已知条件,不等式组解集是x>1
根据“同大取大”原则m≤1.
故选B.
本题考查一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求m的范围.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据函数图象与x轴的交点坐标,当y<0即图象在x轴下侧,求出即可.
【详解】
当y<0时,图象在x轴下方,
∵与x交于(1,0),
∴y<0时,自变量x的取值范围是x<1,
故答案为:x<1.
本题考查了一次函数与一元一次不等式,解题的关键是运用观察法求自变量取值范围通常是从交点观察两边得解.
10、且
【解析】
分式的分母不等于零时分式有意义,且还需满足被开方数大于等于零的条件,根据要求列式计算即可.
【详解】
∵代数式有意义,
∴,且,
∴且,
故答案为:且.
此题考查分式有意义的条件,二次根式被开方数的取值范围的确定,正确理解题意列出不等式是解题的关键.
11、三
【解析】
根据在第二象限中,横坐标小于0,纵坐标大于0,所以-n<0,m<0,再根据每个象限的特点,得出点B在第三象限,即可解答.
【详解】
解:∵点A(m,n)在第二象限,
∴m<0,n>0,
∴-n<0,m<0,
∵点B(-n,m)在第三象限,
故答案为三.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
12、2:5
【解析】
把y=0代入l1解析式求出x的值便可求出点A的坐标.令x=0代入l2的解析式求出点B的坐标.然后可求出AB的长.联立方程组可求出交点C的坐标,继而求出三角形ABC的面积,再利用xD=xB=2易求D点坐标.又已知yE=yD=2可求出E点坐标.故可求出DE,EF的长,即可得出矩形面积.
【详解】
解:由 x+=0,得x=-1.
∴A点坐标为(-1,0),
由-2x+16=0,得x=2.
∴B点坐标为(2,0),
∴AB=2-(-1)=3.
由 ,解得,
∴C点的坐标为(5,6),
∴S△ABC=AB•6=×3×6=4.
∵点D在l1上且xD=xB=2,
∴yD=×2+=2,
∴D点坐标为(2,2),
又∵点E在l2上且yE=yD=2,
∴-2xE+16=2,
∴xE=1,
∴E点坐标为(1,2),
∴DE=2-1=1,EF=2.
∴矩形面积为:1×2=32,
∴S矩形DEFG:S△ABC=32:4=2:5.
故答案为:2:5.
此题主要考查了一次函数交点坐标求法以及图象上点的坐标性质等知识,根据题意分别求出C,D两点的坐标是解决问题的关键.
13、1
【解析】
∵点P(3,2)在函数y=3x-b的图象上,
∴2=3×3-b,
解得:b=1.
故答案是:1.
三、解答题(本大题共5个小题,共48分)
14、见解析.
【解析】
参考小东同学的做法,可得新正方形的边长为,由此可知新正方形的边长等于三个小正方形组成的矩形对角线的长.于是,画出分割线,拼出新正方形即可.
【详解】
解:所画图形如图所示.
此题主要考查对正方形与三角形之间关系的灵活掌握.
15、24
【解析】
试题分析:阴影部分的面积等于以AC、BC为直径的半圆的面积加上△ABC的面积减去以AB为直径的半圆的面积.
试题解析:根据Rt△ABC的勾股定理可得:AB=10,则S==24
考点:勾股定理
16、(1)b=1;(2);(3).
【解析】
(1)将直线经过的两点代入原直线,联立二元一次方程组即可求得b值;
(2)求出k值,解一元一次方程即可;
(3)根据k的大小判断直线是y随x的增大而增大的,由此可知、的大小.
【详解】
解:(1)将(2,4),(-2,-2)代入直线得到:
,
解得:,
∴b=1;
(2)已知,b=1,
令,
解得,
∴关于的方程的解是;
(3)由于>0,可知直线是y随x的增大而增大的,
∵,
∴<.
本题考查一次函数表达式,增减性,解题时要注意理解一次函数与方程的关系.
17、 (1)见解析;(2)见解析;(3)D1(3,3)、D2(-7,3)、D3(-5,-3).
【解析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)首先确定A、B、C三点绕坐标原点O逆时针旋转90°后的对应点位置,再连接即可;
(3)结合图形可得D点位置有三处,分别以AB、AC、BC为对角线确定位置即可.
【详解】
(1)如图所示,△即为所求作;
(2)如图所示,△DEF即为所求作;
(3)D1(3,3)、D2(-7,3)、D3(-5,-3).
此题主要考查了作图--旋转变换,关键是正确确定A、B、C三点旋转后的位置.
18、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.
【解析】
【分析】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,由条件可列方程组,则可求得答案;
(2)①设购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,由条件可得到关于m的不等式组,则可求得m的取值范围,且m为整数,则可求得m的值,即可求得进货方案;
②用m可表示出W,可得到关于m的一次函数,利用一次函数的性质可求得答案.
【详解】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,
根据题意可得,解得,
答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;
(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,
根据题意可得 ,解得75<m≤78,
∵m为整数,
∴m的值为76、77、78,
∴进货方案有3种,分别为:
方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,
方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,
方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;
②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,
∵5>0,
∴W随m的增大而增大,且75<m≤78,
∴当m=78时,W最大,W最大值为1390,
答:当m=78时,所获利润最大,最大利润为1390元.
【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组、找准各量之间的数量关系列出函数解析式是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(2.5,4)或(3,4)或(2,4)或(8,4).
【解析】
试题解析:∵四边形OABC是矩形,
∴∠OCB=90°,OC=4,BC=OA=10,
∵D为OA的中点,
∴OD=AD=5,
①当PO=PD时,点P在OD得垂直平分线上,
∴点P的坐标为:(2.5,4);
②当OP=OD时,如图1所示:
则OP=OD=5,PC==3,
∴点P的坐标为:(3,4);
③当DP=DO时,作PE⊥OA于E,
则∠PED=90°,DE==3;
分两种情况:当E在D的左侧时,如图2所示:
OE=5-3=2,
∴点P的坐标为:(2,4);
当E在D的右侧时,如图3所示:
OE=5+3=8,
∴点P的坐标为:(8,4);
综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4)
考点:1.矩形的性质;2.坐标与图形性质;3.等腰三角形的判定;4.勾股定理.
20、1
【解析】
因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB-BF.
【详解】
解:易证△AFD′≌△CFB,
∴D′F=BF,
设D′F=x,则AF=16-x,
在Rt△AFD′中,(16-x)2=x2+82,
解之得:x=6,
∴AF=AB-FB=16-6=10,
故答案为:1.
本题考查了翻折变换-折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.
21、-1
【解析】
将点的坐标代入反比例函数解析式即可解答.
【详解】
把点(-1,b)代入y=,得b==-1.
故答案是:-1.
考查了反比例函数图象上点的坐标特征.函数图象上所有点的坐标均满足该函数解析式.
22、1.
【解析】
先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.
【详解】
∵与最简二次根式是同类二次根式,且=1,
∴a+1=3,解得:a=1.
故答案为1.
本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.
23、.
【解析】
由正方形的性质得出AB=AD=3,∠ABC=∠D=∠BAD=90°,由勾股定理求出AP,再由旋转的性质得出△ADP≌△ABP′,得出AP′=AP=,∠BAP′=∠DAP,证出△PAP′是等腰直角三角形,得出PP′=AP,即可得出结果.
【详解】
解:∵四边形ABCD是正方形,
∴AB=AD=3,DP=1,∠ABC=∠D=∠BAD=90°,
∴AP=,
∵△ADP旋转后能够与△ABP′重合,
∴△ADP≌△ABP′,
∴AP′=AP=,∠BAP′=∠DAP,
∴∠PAP′=∠BAD=90°,
∴△PAP′是等腰直角三角形,
∴PP′=AP=;
故答案为:.
本题考查了旋转的性质、勾股定理、全等三角形的性质、等腰直角三角形的性质;熟练掌握正方形和旋转的性质是解决问题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1),n=2;(2)3
【解析】
(1)根据待定系数法求解即可;
(2)联立方程组求出点P的坐标,可得点与点关于原点对称,从而可得,设直线的解析式为,,根据待定系数法求出k,b的值,即可求出直线与轴的交点为,从而求出.
【详解】
解:(1)将,两点坐标代入,求得,.
(2)联立方程组,消去得,解得,.
∴,,三点坐标为,,.
∴点与点关于原点对称.
∴.
设直线的解析式为,将,坐标代入得,
解得,.
∴直线与轴的交点为D.
∴.
∴.
本题考查了反比例函数的几何问题,掌握待定系数法、反比例函数的性质、一次函数的性质是解题的关键.
25、证明见解析.
【解析】
由题意可证∠MON=90°=∠PMO,根据勾股定理列出方程求出x的值,可得PM=ON,OP=MN,即结论可证.
【详解】
在中,,
∴,
∴,
∴是直角三角形,
∴,
在中,,
由勾股定理可得,即,
解得,
∴,,
∴,
∴四边形是平行四边形.
本题考查了平行四边形的判定,勾股定理和勾股定理的逆定理,利用勾股定理的逆定理证明∠MON=90°是本题的关键.
26、(1)甲种图书每本的进价为1元,乙种图书每本的进价是45元;(2)最多购进甲种图书2本.
【解析】
试题分析:(1)设乙种图书每本的进价为x元,则甲种图书每本的进价是(x+20)元,根据花780元购进甲图书的数量与花540元购进乙图书的数量相同,列方程求解;
(2)设购进甲种图书m本,则购进乙种图书为(70-m)本,根据总购书费用不超过4000元,列不等式求解.
试题解析:
解:(1)设乙种图书每本的进价为x元,则甲种图书每本的进价是(x+20)元,
由题意得, =,
解得:x=45,
经检验,x=45是原分式方程的解,且符合题意,
则x+20=1.
答:甲种图书每本的进价为1元,乙种图书每本的进价是45元;
(2)设购进甲种图书m本,则购进乙种图书为(70﹣m)本,
由题意得,1m+45(70﹣m)≤4000,
解得:m≤2.5,
∵m为整数,且取最大值,
∴m=2.
答:最多购进甲种图书2本.
点睛:本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系或不等关系,列方程或不等式求解.
题号
一
二
三
四
五
总分
得分
2024-2025学年黑龙江省大庆市肇州实验中学九上数学开学监测试题【含答案】: 这是一份2024-2025学年黑龙江省大庆市肇州实验中学九上数学开学监测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年黑龙江齐齐哈尔市建华区九上数学开学经典模拟试题【含答案】: 这是一份2024-2025学年黑龙江齐齐哈尔市建华区九上数学开学经典模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广西贺州市数学九上开学监测试题【含答案】: 这是一份2024-2025学年广西贺州市数学九上开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。