|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024-2025学年河北省廊坊市名校九年级数学第一学期开学质量检测试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年河北省廊坊市名校九年级数学第一学期开学质量检测试题【含答案】01
    2024-2025学年河北省廊坊市名校九年级数学第一学期开学质量检测试题【含答案】02
    2024-2025学年河北省廊坊市名校九年级数学第一学期开学质量检测试题【含答案】03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年河北省廊坊市名校九年级数学第一学期开学质量检测试题【含答案】

    展开
    这是一份2024-2025学年河北省廊坊市名校九年级数学第一学期开学质量检测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若点A(-3,),B(1,)都在直线上,则与的大小关系是( )
    A.D.无法比较大小
    2、(4分)如图,在△ABC中,AB=5,AC=4,∠A=60°,若边AC的垂直平分线DE交AB于点D,连接CD,则△BDC的周长为( )
    A.8B.9C.5+D.5+
    3、(4分)在平行四边形ABCD中,若∠A+∠C=260°,则∠D的度数为( )
    A.120°B.100°C.50°D.130°
    4、(4分)若正比例函数的图象经过点和点,当时,,则的取值范围是( )
    A.B.C.D.
    5、(4分)矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为( )
    A.3B.C.2或3D.3或
    6、(4分)有m支球队参加篮球比赛,共比赛了21场,每两队之间都比赛一场,则下列方程中符合题意的是( )
    A.B.
    C.D.
    7、(4分)已知,在平面直角坐标系xOy中,点A(-4,0),点B在直线y=x+2上.当A、B两点间的距离最小时,点B的坐标是( )
    A.(,)B.(,)C.(-3,-1)D.(-3,)
    8、(4分)如图, 直线与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点, 点P为OA上一动点, 当PC+PD最小时, 点P的坐标为( )
    A.(-4,0)B.(-1,0)C.(-2,0)D.(-3,0)
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在平行四边形ABCD中,AB=,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.
    10、(4分)如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于_____.
    11、(4分)如图,已知函数y=x+2b和y=ax+3的图象交于点P,则不等式x+2b>ax+3的解集为________ .
    12、(4分)若关于x的分式方程=有增根,则m的值为_____.
    13、(4分)如图,DE∥BC,,则=_______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,且AE=CF,连接AC,EF.
    (1)如图①,求证:EF//AC;
    (2)如图②,EF与边CD交于点G,连接BG,BE,
    ①求证:△BAE≌△BCG;
    ②若BE=EG=4,求△BAE的面积.
    15、(8分)甲、乙两位同学同时从学校出发,骑自行车前往距离学校20千米的郊野公园。已知甲同学比乙同学平均每小时多骑行2千米,甲同学在路上因事耽搁了30分钟,结果两人同时到达公园。问:甲、乙两位同学平均每小时各骑行多少千米?
    16、(8分)某商场销售A,B两款书包,己知A,B两款书包的进货价格分别为每个30元、50元,商场用3600元的资金购进A,B两款书包共100个.
    (1)求A,B两款书包分别购进多少个?
    (2)市场调查发现,B款书包每天的销售量y(个)与销售单价x(元)有如下关系:y=-x+90(60≤x≤90).设B款书包每天的销售利润为w元,当B款书包的销售单价为多少元时,商场每天B款书包的销售利润最大?最大利润是多少元?
    17、(10分)如图,平面直角坐标系中,一次函数的图象分别与,轴交于,两点,正比例函数的图象与交于点.
    (1)求的值及的解析式;
    (2)求的值;
    (3)一次函数的图象为,且,,不能围成三角形,直接写出的值.
    18、(10分)如图,对称轴为直线x=1的抛物线经过A(﹣1,0)、C(0,3)两点,与x轴的另一个交点为B,点D在y轴上,且OB=3OD
    (1)求该抛物线的表达式;
    (2)设该抛物线上的一个动点P的横坐标为t
    ①当0<t<3时,求四边形CDBP的面积S与t的函数关系式,并求出S的最大值;
    ②点Q在直线BC上,若以CD为边,点C、D、Q、P为顶点的四边形是平行四边形,请求出所有符合条件的点P的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)分式与的最简公分母是__________.
    20、(4分)如图,矩形纸片ABCD,AB=5,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE,DE分别交AB于点O,F,且OP=OF,则AF的值为______.
    21、(4分)如图,在矩形中,点为的中点,点为上一点,沿折叠,点恰好与点重合,则的值为______.
    22、(4分)已知,则____.
    23、(4分)化简;÷(﹣1)=______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在正方形中,点是对角线上的两点,且满足,连接.试判断四边形的形状,并说明理由.
    25、(10分)把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,联结DF,点M,N分别为DF,EF的中点,联结MA,MN.
    (1)如图1,点E,F分别在正方形的边CB,AB上,请判断MA,MN的数量关系和位置关系,直接
    写出结论;
    (2)如图2,点E,F分别在正方形的边CB,AB的延长线上,其他条件不变,那么你在(1)中得到的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
    图1 图2
    26、(12分)如图,在□ABCD中,E、F分别是BC、AD上的点,且AE∥CF,AE与CF相等吗?说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    先根据直线y=x+1判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.
    【详解】
    ∵直线y=x+1,k=>0,
    ∴y随x的增大而增大,
    又∵-3<1,
    ∴y1<y1.
    故选A.
    本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.
    2、C
    【解析】
    过点C作CM⊥AB,垂足为M,根据勾股定理求出BC的长,再根据DE是线段AC的垂直平分线可得△ADC等边三角形,则CD=AD=AC=4,代入数值计算即可.
    【详解】
    过点C作CM⊥AB,垂足为M,
    在Rt△AMC中,
    ∵∠A=60°,AC=4,
    ∴AM=2,MC=2,
    ∴BM=AB-AM=3,
    在Rt△BMC中,
    BC===,
    ∵DE是线段AC的垂直平分线,
    ∴AD=DC,
    ∵∠A=60°,
    ∴△ADC等边三角形,
    ∴CD=AD=AC=4,
    ∴△BDC的周长=DB+DC+BC=AD+DB+BC=AB+BC=5+.
    故答案选C.
    本题考查了勾股定理,解题的关键是熟练的掌握勾股定理的运算.
    3、C
    【解析】
    根据平行四边形的对角相等、邻角互补的性质即可求解.
    【详解】
    ∵四边形ABCD为平行四边形
    ∴∠A=∠C,∠A+∠D=180°,
    ∵∠A+∠C=260°,
    ∴∠A=∠C=130°,
    ∴∠D =180°-∠A=50° .
    故选C.
    本题考查了平行四边形的性质,熟练运用平行四边形的性质是解决问题的关键.
    4、D
    【解析】
    试题解析:由题目分析可知:在正比例函数y=(1-4m)x中,y随x的增大而减小
    由一次函数性质可知应有:1-4m<0,即-4m<-1,
    解得:m>.
    故选D.
    考点:1.一次函数图象上点的坐标特征;2.正比例函数的定义.
    5、D
    【解析】
    当△CEB′为直角三角形时,有两种情况:
    ①当点B′落在矩形内部时,如图1所示.
    连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
    ②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.
    【详解】
    当△CEB′为直角三角形时,有两种情况:
    ①当点B′落在矩形内部时,如图1所示.
    连结AC,
    在Rt△ABC中,AB=1,BC=4,
    ∴AC==5,
    ∵∠B沿AE折叠,使点B落在点B′处,
    ∴∠AB′E=∠B=90°,
    当△CEB′为直角三角形时,只能得到∠EB′C=90°,
    ∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
    ∴EB=EB′,AB=AB′=1,
    ∴CB′=5-1=2,
    设BE=x,则EB′=x,CE=4-x,
    在Rt△CEB′中,
    ∵EB′2+CB′2=CE2,
    ∴x2+22=(4-x)2,解得x=,
    ∴BE=;
    ②当点B′落在AD边上时,如图2所示.
    此时ABEB′为正方形,
    ∴BE=AB=1.
    综上所述,BE的长为或1.
    故选D.
    本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.
    6、A
    【解析】
    设这次有m队参加比赛,由于赛制为单循环形式(每两队之间都赛一场),则此次比赛的总场数为:场.根据题意可知:此次比赛的总场数=21场,依此等量关系列出方程即可.
    【详解】
    设这次有m队参加比赛,则此次比赛的总场数为场,
    根据题意列出方程得:,
    故选:A.
    此题考查由实际问题抽象出一元二次方程,解题关键在于根据题意列出方程.
    7、C
    【解析】
    分析:根据题意画出图形,过点A做AB⊥直线y=x+2于2点B,则点B即为所求点,根据锐角三角函数的定义得出∠OCD=45°,故可判断出△ABC是等腰直角三角形,进而可得出B点坐标.
    详解:如图,过点A作AB⊥直线y=x+2于点B,则点B即为所求.
    ∵C(﹣2,0),D(0,2),
    ∴OC=OD,
    ∴∠OCD=45°,
    ∴△ABC是等腰直角三角形,
    ∴B(﹣3,1).
    故选C.
    本题考查的是一次函数图象上点的坐标特点,根据题意画出图形,利用数形结合求解是解本题的关键.
    8、C
    【解析】
    根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标并根据三角形中位线定理得出CD//x轴,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.
    【详解】
    解:连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示
    在中,当y=0时,,解得x=-8,A点坐标为,
    当x=0时,,B点坐标为,
    ∵点C、D分别为线段AB、OB的中点,
    ∴点C(-4,3),点D(0,3),CD∥x轴,
    ∵点D′和点D关于x轴对称,
    ∴点D′的坐标为(0,-3),点O为线段DD′的中点.
    又∵OP∥CD,
    ∴OP为△CD′D的中位线,点P为线段CD′的中点,
    ∴点P的坐标为,
    故选:C.
    本题考查轴对称——最短路径问题,一次函数图象与坐标轴交点问题,三角形中位线定理.能根据轴对称的性质定理找出PC+PD值最小时点P的位置是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、3.
    【解析】
    试题分析:点B恰好与点C重合,且四边形ABCD是平行四边形,根据翻折的性质, 则AE⊥BC,BE=CE=3,在Rt△ABE中,由勾股定理得.故答案为3.
    考点:3.翻折变换(折叠问题);3.勾股定理;3.平行四边形的性质.
    10、
    【解析】
    先从平行四边形、矩形、菱形、正方形、等腰梯形找出既是轴对称图形又是中心对称图形的图形,然后根据概率公式求解即可.
    【详解】
    ∵五张完全相同的卡片上分别画有平行四边形、矩形、菱形、正方形、等腰梯形,其中既是轴对称图形又是中心对称图形的有矩形、菱形、正方形,
    ∴现从中任意抽取一张,卡片上所写的图形既是轴对称图形又是中心对称图形的概率为,
    故答案为.
    本题考查平行四边形、矩形、菱形、正方形、等腰梯形的性质及概率的计算方法,熟练掌握图形的性质及概率公式是解答本题的关键. 如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    11、x>1
    【解析】
    解:由图象可知:当x>1时,.故答案为:x>1.
    12、3
    【解析】
    增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入化为整式方程的方程算出m的值.
    【详解】
    解:去分母得:3x=m+3,
    由分式方程有增根,得到x﹣2=0,即x=2,
    把x=2代入方程得:6=m+3,
    解得:m=3,
    故答案为:3
    此题考查分式方程的增根,解题关键在于得到x的值.
    13、
    【解析】
    依题意可得△ADE∽△ABC,根据相似三角形的对应边的比相等即可得出比值.
    【详解】
    解:∵DE∥BC
    ∴△ADE∽△ABC



    ∴,
    故答案为:.
    本题主要考查了相似三角形的性质和判定,熟练掌握相关的知识是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(1)①见解析;②△BAE的面积为1.
    【解析】
    (1)利用平行四边形的判定及其性质定理即可解决问题;
    (1)①根据SAS可以证明两三角形全等;
    ②先根据等腰直角△DEG计算DE的长,设AE=a,表示正方形的边长,根据勾股定理列式,可得+a=4,最后根据三角形面积公式,整体代入可得结论.
    【详解】
    (1)证明:∵正方形ABCD
    ∴AE//CF,
    ∵AE=CF
    ∴AEFC是平行四边形
    ∴EF//AC.
    (1)①如图,
    ∵四边形ABCD是正方形,且EF∥AC,
    ∴∠DEG=∠DAC=45°,∠DGE=∠DCA=45°;
    ∵AD∥BF,
    ∴∠CFG=∠DEG=45°,
    ∵∠CGF=∠DGE=45°,
    ∴∠CGF=∠CFG,
    ∴CG=CF;
    ∵AE=CF,
    ∴AE=CG;
    在△ABE与△CBG中,
    ∵AE=CG,∠BAE=∠BCG,AB=BC
    ∴△ABE≌CBG(SAS);
    ②由①知△DEG是等腰直角三角形,
    ∵EG=4,
    ∴DE=,
    设AE=a,则AB=AD=a+,
    Rt△ABE中,由勾股定理得:AB1+AE1=BE1,
    ∴(a+)1+a1=41,
    ∴a1+a=4,
    ∴S△ABE=AB•AE=a(a+)= (a1+a)=×4=1.
    本题是四边形的综合题,本题难度适中,考查了正方形的性质、全等三角形的判定及其应用问题;解题的关键是熟练掌握正方形的性质,结合等腰直角三角形的性质来解决问题;并利用未知数结合整体代入解决问题.
    15、甲平均每小时行驶10千米,乙平均每小时行驶8千米
    【解析】
    设乙平均每小时骑行x千米,则甲平均每小时骑行(x+2)千米,根据题意可得,同样20千米的距离,乙比甲多走30分钟,据此列方程求解.
    【详解】
    设甲平均每小时行驶x千米,
    则,
    化简为:,
    解得:,
    经检验不符合题意,是原方程的解,
    答:甲平均每小时行驶10千米,乙平均每小时行驶8千米。
    本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.
    16、(1)A,B两款书包分别购进70和30个;(2)B款书包的销售单价为70元时B款书包的销售利润最大,最大利润是400元
    【解析】
    (1)此题的等量关系为:购进A款书包的数量+购进B款书包的数量=100;购进A款书包的数量×进价+购进B款书包的数量×进价=3600,设未知数,列方程求解即可.
    (2)根据B款书包每天的销售利润=(B款书包的售价-B款书包的进价)×销售量y,列出w与x的函数解析式,再利用二次函数的性质,即可解答.
    【详解】
    (1)解: 设购进A款书包x个,则B款为(100−x)个,
    由题意得:30x+50(100−x)=3600,
    解之:x=70,
    ∴100-x=100-70=30
    答:A,B两款书包分别购进70和30个.
    (2)解: 由题意得:w=y(x−50)=−(x−50)(x−90)=-x2+140x-4500,
    ∵−1<0,故w有最大值,
    函数的对称轴为:x=70,而60⩽x⩽90,
    故:当x=70时,w有最大值为400,
    答:B款书包的销售单价为70元时B款书包的销售利润最大,最大利润是400元.
    考核知识点:二次函数y=a(x-h)2+k的性质,二次函数的实际应用-销售问题.
    17、(1)m=2;的解析式为:;(2)8;(3)k的值为或或1
    【解析】
    (1)将点C坐标代入即可求出m的值,利用待定系数法即可求出l2的解析式;
    (2)根据一次函数,可求出A(8,0),B(0,4),结合点C的坐标,利用三角形面积的计算公式即可求出的值;
    (3)若,,不能围成三角形,则有三种情况,①当l1∥l3时;②当l2∥l3时;③当l3过点C时,根据得出k的值即可.
    【详解】
    解:(1)将点代入得,解得m=2,
    ∴C(2,3)
    设l2的解析式为y=nx,
    将点C代入得:3=2n,
    ∴,
    ∴的解析式为:;
    (2)如图,过点C作CE⊥y轴于点E,作CF⊥x轴于点F,
    ∵C(2,3)
    ∴CE=2,CF=3,
    ∵一次函数的图象分别与,轴交于,两点,
    ∴当x=0时,y=4,当y=0时,x=8,
    ∴A(8,0),B(0,4),
    ∴OA=8,OB=4,

    (3)①当l1∥l3时,,,不能围成三角形,此时k=;
    ②当l2∥l3时,,,不能围成三角形,此时k=;
    ③当l3过点C时,将点C代入中得:,解得k=1,
    综上所述,k的值为或或1.
    本题考查了两直线的交点,要求利用图象求解各问题,要认真体会点的坐标,一次函数与一元一次方程组之间的内在联系.
    18、(1)y=﹣x1+1x+3(1)①t=时,S的最大值为②P(1,4)或(1,3)或(,)或(,)
    【解析】
    (1)设所求抛物线的表达式为 y=a(x+1)(x﹣3),把点C(2,3)代入表达式,即可求解;
    (1)①设P(t,﹣t1+1t+3),则E(t,﹣t+3),S四边形CDBP=S△BCD+S△BPC=CD•OB+PE•OB,即可求解;
    ②分点P在点Q上方、下方两种情况讨论即可求解.
    【详解】
    (1)∵抛物线的对称轴为x=1,A(﹣1,2),
    ∴B(3,2).
    ∴设所求抛物线的表达式为 y=a(x+1)(x﹣3),
    把点C(2,3)代入,得3=a(2+1)(2﹣3),
    解得a=﹣1,
    ∴所求抛物线的表达式为y=﹣(x+1)(x﹣3),即y=﹣x1+1x+3;
    (1)①连结BC.
    ∵B(3,2),C(2,3),
    ∴直线BC的表达式为y=﹣x+3,
    ∵OB=3OD,OB=OC=3,
    ∴OD=1,CD=1,
    过点P作PE∥y轴,交BC于点E(如图1).
    设P(t,﹣t1+1t+3),则E(t,﹣t+3).
    ∴PE=﹣t1+1t+3﹣(﹣t+3)=﹣t1+3t.
    S四边形CDBP=S△BCD+S△BPC=CD•OB+PE•OB,
    即S=×1×3+(﹣t1+3t)×3=﹣(t﹣)1+,
    ∵a=﹣<2,且2<t<3,
    ∴当t=时,S的最大值为;
    ②以CD为边,点C、D、Q、P为顶点的四边形是平行四边形,
    则PQ∥CD,且PQ=CD=1.
    ∵点P在抛物线上,点Q在直线BC上,
    ∴点P(t,﹣t1+1t+3),点Q(t,﹣t+3).
    分两种情况讨论:
    (Ⅰ) 如图1,当点P在点Q上方时,
    ∴(﹣t1+1t+3)﹣(﹣t+3)=1.即t1﹣3t+1=2.解得 t1=1,t1=1.
    ∴P1(1,4),P1(1,3),
    (Ⅱ) 如图3,当点P在点Q下方时,
    ∴(﹣t+3)﹣(﹣t1+1t+3)=1.即t1﹣3t﹣1=2.
    解得 t3=,t4=,
    ∴P3(,),P4(,),
    综上所述,所有符合条件的点P的坐标分别为:P(1,4)或(1,3)或(,)或(,).
    本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    先把分母分解因式,再根据最简公分母定义即可求出.
    【详解】
    解:第一个分母可化为(x-1)(x+1)
    第二个分母可化为x(x+1)
    ∴最简公分母是x(x-1)(x+1).
    故答案为:x(x-1)(x+1)
    此题的关键是利用最简公分母的定义:取各分母系数的最小公倍数与字母因式的最高次幂的积作最简公分母.
    20、
    【解析】
    根据折叠的性质可得出DC=DE、CP=EP,由“AAS”可证△OEF≌△OBP,可得出OE=OB、EF=BP,设EF=x,则BP=x、DF=5-x、BF=PC=3-x,进而可得出AF=2+x,在Rt△DAF中,利用勾股定理可求出x的值,即可得AF的长.
    【详解】
    解:∵将△CDP沿DP折叠,点C落在点E处,
    ∴DC=DE=5,CP=EP.
    在△OEF和△OBP中,
    ,
    ∴△OEF≌△OBP(AAS),
    ∴OE=OB,EF=BP.
    设EF=x,则BP=x,DF=DE-EF=5-x,
    又∵BF=OB+OF=OE+OP=PE=PC,PC=BC-BP=3-x,
    ∴AF=AB-BF=2+x.
    在Rt△DAF中,AF2+AD2=DF2,
    ∴(2+x)2+32=(5-x)2,
    ∴x=
    ∴AF=2+=
    故答案为:
    本题考查了翻折变换,矩形的性质,全等三角形的判定与性质以及勾股定理的应用,解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
    21、
    【解析】
    【分析】由矩形性质可得AB=CD,BC=AD;由对折得AB=BE,设AB=x,根据勾股定理求出BC关于x的表达式,便可得到.
    【详解】设AB=x,在矩形ABCD中, AB=CD=x,BC=AD;
    因为,E为CD的中点,
    所以,CE=,
    由对折可知BE=AB=x.
    在直角三角形BCE中
    BC=,
    所以,.
    故答案为图(略),
    【点睛】本题考核知识点:矩形性质,轴对称. 解题关键点:利用轴对称性质得到相等线段,利用勾股定理得到BE和BC的关系.
    22、1
    【解析】
    先求出x的值,然后提取公因式xy分解因式,再把数值代入得出答案.
    【详解】
    解:∵,
    ∴x=-5
    ∴xy(x+y)
    =-5×3×(-2)
    =1.
    此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.
    23、-
    【解析】
    直接利用分式的混合运算法则即可得出.
    【详解】
    原式,


    .
    故答案为.
    此题主要考查了分式的化简,正确掌握运算法则是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、四边形是菱形,理由详见解析.
    【解析】
    根据正方形的性质,得到,由,得到,即可得到四边形为菱形.
    【详解】
    证明:四边形是菱形;
    理由如下:连接交于点,
    四边形为正方形,

    又,

    即,
    与相互垂直平分,
    四边形为菱形.
    本题考查了正方形的性质,以及菱形的判定,解题的关键是熟练掌握正方形的性质和菱形的判定进行解题.
    25、(1)MA=MN,MA⊥MN;(2)成立,理由详见解析
    【解析】
    (1)解:连接DE,
    ∵四边形ABCD是正方形,
    ∴AD=CD=AB=BC,∠DAB=∠DCE=90°,
    ∵点M是DF的中点,
    ∴AM=DF.
    ∵△BEF是等腰直角三角形,
    ∴AF=CE,
    在△ADF与△CDE中,,
    ∴△ADF≌△CDE(SAS),
    ∴DE=DF.
    ∵点M,N分别为DF,EF的中点,
    ∴MN是△EFD的中位线,
    ∴MN=DE,
    ∴AM=MN;
    ∵MN是△EFD的中位线,
    ∴MN∥DE,
    ∴∠FMN=∠FDE.
    ∵AM=MD,
    ∴∠MAD=∠ADM,
    ∵∠AMF是△ADM的外角,
    ∴∠AMF=2∠ADM.
    ∵△ADF≌△CDE,
    ∴∠ADM=∠CDE,
    ∴∠ADM+∠CDE+∠FDE=∠FMN+∠AMF=90°,
    ∴MA⊥MN.
    ∴MA=MN,MA⊥MN.
    (2)成立.
    理由:连接DE.
    ∵四边形ABCD是正方形,
    ∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°.
    在Rt△ADF中,
    ∵点M是DF的中点,
    ∴MA=DF=MD=MF,
    ∴∠1=∠1.
    ∵点N是EF的中点,
    ∴MN是△DEF的中位线,
    ∴MN=DE,MN∥DE.
    ∵△BEF是等腰直角三角形,
    ∴BF=BF,∠EBF=90°.
    ∵点E、F分别在正方形CB、AB的延长线上,
    ∴AB+BF=CB+BE,即AF=CE.
    在△ADF与△CDE中,
    ∴△ADF≌△CDE,
    ∴DF=DE,∠1=∠2,
    ∴MA=MN,∠2=∠1.
    ∵∠2+∠4=∠ABC=90°,∠4=∠5,
    ∴∠1+∠5=90°,
    ∴∠6=180°﹣(∠1+∠5)=90°,
    ∴∠7=∠6=90°,MA⊥MN.
    考点:四边形综合题
    26、AE=CF.理由见解析.
    【解析】
    试题分析:根据两组对边平行的四边形是平行四边形,可以证明四边形AECF是平行四边形,从而得到AE=CF.
    试题解析:AE=CF.理由如下:
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,即AF∥EC.
    又∵AE∥CF,
    ∴四边形AECF是平行四边形.
    ∴AE=CF.
    考点:平行四边形的判定与性质.
    题号





    总分
    得分
    相关试卷

    2024-2025学年广东省肇庆市名校数学九年级第一学期开学质量检测试题【含答案】: 这是一份2024-2025学年广东省肇庆市名校数学九年级第一学期开学质量检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年甘肃省庆阳市名校九年级数学第一学期开学教学质量检测试题【含答案】: 这是一份2024-2025学年甘肃省庆阳市名校九年级数学第一学期开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年福建省寿宁县数学九年级第一学期开学质量检测模拟试题【含答案】: 这是一份2024-2025学年福建省寿宁县数学九年级第一学期开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map