年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024-2025学年杭州市建兰中学九年级数学第一学期开学质量检测模拟试题【含答案】

    2024-2025学年杭州市建兰中学九年级数学第一学期开学质量检测模拟试题【含答案】第1页
    2024-2025学年杭州市建兰中学九年级数学第一学期开学质量检测模拟试题【含答案】第2页
    2024-2025学年杭州市建兰中学九年级数学第一学期开学质量检测模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年杭州市建兰中学九年级数学第一学期开学质量检测模拟试题【含答案】

    展开

    这是一份2024-2025学年杭州市建兰中学九年级数学第一学期开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)关于的一元二次方程有实数根,则的取值范围是( )
    A.B.
    C.且D.且
    2、(4分)某种出租车的收费标准是:起步价8元(即距离不超过,都付8元车费),超过以后,每增加,加收1.2元(不足按计).若某人乘这种出租车从甲地到乙地经过的路程是,共付车费14元,那么的最大值是( ).
    A.6B.7C.8D.9
    3、(4分)将矩形纸片按如图的方式折叠,使点B与点D都与对角线AC的中点O重合,得到菱形,若,则的长为( )
    A.B.C.D.
    4、(4分)如图,被笑脸盖住的点的坐标可能是( )
    A.(3,2)B.(-3,2)C.(-3,-2)D.(3,-2)
    5、(4分)函数y=中,自变量x的取值范围在数轴上表示正确的是( )
    A.B.C.D.
    6、(4分)在反比例函数y=的图象上有两点A(x1,y1)、B(x2,y2).若x1<0<x2,y1>y2,则k取值范围是
    ( )
    A.k≥2B.k>2C.k≤2D.k<2
    7、(4分)八(1)班班长统计2017年5~12月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制出如下折线统计图,下列说法不正确的是( )
    A.众数是58B.平均数是50
    C.中位数是58D.每月阅读数量超过40本的有6个月
    8、(4分)如图圆柱的底面周长是,圆柱的高为,为圆柱上底面的直径,一只蚂蚁如果沿着圆柱的侧面从下底面点处爬到上底面点处,那么它爬行的最短路程为( )

    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)计算· (a≥0)的结果是_________.
    10、(4分)如图,矩形ABCD中,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=8,DC=6,则BE的长为______.
    11、(4分)下列4个分式:①;②;③ ;④,中最简分式有_____个.
    12、(4分)如图,两张等宽的纸条交叉叠放在一起,若重叠都分构成的四边形ABCD中,AB=3,BD=1.则AC的长为_________________.
    13、(4分)如图,正方形OMNP的一个顶点与正方形ABCD的对角线交点O重合,且正方形ABCD、OMNP的边长都是4cm,则图中重合部分的面积是_____cm1.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知关于x的一元二次方程.
    (1)当m为何值时,方程有两个不相等的实数根;
    (2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.
    15、(8分)如图1,已知正方形ABCD的边长为6,E是CD边上一点(不与点C 重合),以CE为边在正方形ABCD的右侧作正方形CEFG,连接BF、BD、FD.
    (1)当点E与点D重合时,△BDF的面积为 ;当点E为CD的中点时,△BDF的面积为 .
    (2)当E是CD边上任意一点(不与点C重合)时,猜想S△BDF与S正方形ABCD之间的关系,并证明你的猜想;
    (3)如图2,设BF与CD相交于点H,若△DFH的面积为,求正方形CEFG的边长.
    16、(8分)如图,矩形纸片中,已知,折叠纸片使边落在对角线上,点落在点处,折痕为,且,求线段的长.
    17、(10分)如图,在菱形ABCD中,作于E,BF⊥CD于F,求证:.
    18、(10分)某校为了了解学生孝敬父母的情况(选项:A为父母洗一次脚;B帮父母做一次家务;C给父母买一件礼物;D其它),在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):
    根据以上信息解答下列问题:
    (1)这次被调查的学生有多少人?
    (2)求表中m,n,p的值,并补全条形统计图.
    (3)该校有1600名学生,估计该校全体学生中选择B选项的有多少人?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若反比例函数图象经过点A (﹣6,﹣3),则该反比例函数表达式是________.
    20、(4分)如图,在正方形ABCD中,延长BC至E,使CE=CA,则∠E的度数是_____.
    21、(4分)如图,在平面直角坐标系中,函数和的图象分别为直线,,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…,依次进行下去,则点的坐标为______,点的坐标为______.
    22、(4分)如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出_____个平行四边形.
    23、(4分)如图,在一张长为7cm,宽为5cm的矩形纸片上,现在剪下一个腰长为4cm的等腰三角形,要求等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上,则剪下的等腰三角形一腰上的的高为_____________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)解不等式组.
    25、(10分)如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形ABCD的外角∠DCG的平分线CF于点F.
    (1)如图2,取AB的中点H,连接HE,求证:AE=EF.
    (2)如图3,若点E是BC的延长线上(除C点外)的任意一点,其他条件不变结论“AE=EF”仍然成立吗?如果正确,写出证明过程:如果不正确,请说明理由.
    26、(12分)图①,图②都是4×6的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,且点A,B均在格点上.
    (1)在图①中以AB为对角线画出一个矩形,使矩形的另外两个顶点也在格点上,且所画的矩形不是正方形;
    (2)在图②中以AB为对角线画出一个菱形,使菱形的另外两个顶点也在格点上,且所画的菱形不是正方形;
    (3)图①中所画的矩形的面积为 ;图②中所画的菱形的周长为 .
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    由方程是一元二次方程可得:,由方程有实数根列不等式得的范围,综合得到答案
    【详解】
    解:因为一元二次方程有实数根,所以:
    且,
    解得:且.
    故选D.
    本题考查的是一元二次方程的根的情况,考查的是对根的判别式的理解,掌握一元二次方程根的判别式是解题关键.
    2、C
    【解析】
    已知从甲地到乙地共需支付车费14元,从甲地到乙地经过的路程为x千米,首先去掉前3千米的费用,从而根据题意列出不等式,从而得出答案.
    【详解】
    设某人从甲地到乙地经过的路程是x千米,根据题意,
    得:8+1.2(x−3)⩽14,
    解得:x⩽8,
    即x的最大值为8km,
    故选C.
    此题考查一元一次不等式的应用,解题关键在于列出方程
    3、D
    【解析】
    解:∵折叠
    ∴∠DAF=∠FAC,AD=AO,BE=EO,
    ∵AECF是菱形
    ∴∠FAC=∠CAB,AOE=90°
    ∴∠DAF=∠FAC=∠CAB
    ∵DABC是矩形
    ∴∠DAB=90°,AD=BC
    ∴∠DAF+∠FAC+∠CAB=90°
    ∴∠DAF=∠FAC=∠CAB=30°
    ∴AE=2OE=2BE
    ∵AB=AE+BE=3
    ∴AE=2,BE=1
    ∴在Rt△AEO中,AO==AD
    ∴BC=
    故选D.
    4、C
    【解析】
    判断出笑脸盖住的点在第三象限,再根据第三象限内点的坐标特征解答.
    【详解】
    由图可知,被笑脸盖住的点在第三象限,
    (3,2),(-3,2),(-3,-2),(3,-2)四个点只有(-3,-2)在第三象限.
    故选C.
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    5、B
    【解析】
    根据函数y=可得出x-1≥0,再解出一元一次不等式即可.
    【详解】
    由题意得,x-1≥0,
    解得x≥1.
    在数轴上表示如下:
    故选B.
    本题要考查的是一元一次不等式的解法以及二次根式成立得出判定,熟练掌握一元一次不等式的解法是本题的解题关键.
    6、B
    【解析】
    分析:根据反比例函数的性质,可得答案.
    详解:由x1<0<x1,y1>y1,得:
    图象位于二四象限,1﹣k<0,解得:k<1.
    故选B.
    点睛:本题考查了反比例函数的性质,利用反比例函数的性质是解题的关键.
    7、B
    【解析】
    根据众数的定义,可判断A;根据平均数的计算方法,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.
    【详解】
    A. 出现次数最多的是58,众数是58,故A正确;
    B.平均数为:,故B错误;
    C. 由小到大顺序排列数据28,36,42,58,58,70,75,83,中位数是=58,故C正确;
    D. 由折线统计图看出每月阅读量超过40本的有6个月,故D正确;
    故选:B
    此题考查折线统计图,算术平均数,中位数,众数,解题关键在于看懂图中数据.
    8、C
    【解析】
    把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,利用两点之间线段最短可判断蚂蚁爬行的最短路径为AB′,如图,由于AC=12,CB′=5,然后利用勾股定理计算出AB′即可.
    【详解】
    解:把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,则蚂蚁爬行的最短路径为AB′,如图,AC=12,CB′=5,
    在Rt△ACB′,
    所以它爬行的最短路程为13cm.
    故选:C.
    本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、4a
    【解析】
    【分析】根据二次根式乘法法则进行计算即可得.
    【详解】
    =
    =
    =4a,
    故答案为4a.
    【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.
    10、
    【解析】
    ∵四边形ABCD为矩形,
    ∴AB=DC=6,BC=AD=8,AD∥BC,∠B=90°.
    ∵△ACD沿AC折叠到△ACD′,AD′与BC交于点E,
    ∴∠DAC=∠D′AC.
    ∵AD∥BC,
    ∴∠DAC=∠ACB.
    ∴∠D′AC=∠ACB.
    ∴AE=EC.
    设BE=x,则EC=8-x,AE=8-x.
    ∵在Rt△ABE中,AB2+BE2=AE2,
    ∴62+x2=(8-x)2,解得x=,即BE的长为.
    故答案是:.
    11、①④
    【解析】
    根据最简分式的定义逐式分析即可.
    【详解】
    ①是最简分式;②=,不是最简分式 ;③=,不是最简分式;④是最简分式.
    故答案为2.
    本题考查了最简分式的识别,与最简分数的意义类似,当一个分式的分子与分母,除去1以外没有其它的公因式时,这样的分式叫做最简分式.
    12、2
    【解析】
    过点D作DE⊥AB于点E,DF⊥BC于点F,首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.然后依据勾股定理求得OB的长,从而可得到BD的长.
    【详解】
    如图,过点D作DE⊥AB于点E,DF⊥BC于点F,连接AC,DB交于点O,
    则DE=DF,
    由题意得:AB∥CD,BC∥AD,
    ∴四边形ABCD是平行四边形
    ∵S▱ABCD=BC•DF=AB•DE.
    又∵DE=DF.
    ∴BC=AB,
    ∴四边形ABCD是菱形;
    ∴OB=OD=2,OA=OC,AC⊥BD.

    ∴AC=2AO=2
    故答案为:2
    本题考查了菱形的判定、解直角三角形以及四边形的面积,证得四边形为菱形是解题的关键.
    13、2.
    【解析】
    根据题意可得:△AOG≌△DOF(ASA),所以S四边形OFDG=S△AOD=S 正方形ABCD,从而可求得其面积.
    【详解】
    解:如图,∵正方形ABCD和正方形OMNP的边长都是2cm,

    ∴OA=OD,∠AOD=∠POM=90°,∠OAG=∠ODF=25°,
    ∴∠AOG=∠DOF,
    在△AOG和△DOF中,
    ∵ ,
    ∴△AOG≌△DOF(ASA),
    ∴S四边形OFDG=S△AOD=S 正方形ABCD=× =2;
    则图中重叠部分的面积是2cm1,
    故答案为:2.
    本题考查正方形的性质,题中重合的部分的面积是不变的,且总是等于正方形ABCD面积的.
    三、解答题(本大题共5个小题,共48分)
    14、(1)m>﹣;(2)m=﹣1.
    【解析】
    (1)根据方程的系数结合根的判别式,即可得出△=1m+17>0,解之即可得出结论;
    (2)设方程的两根分别为a、b,根据根与系数的关系结合菱形的性质,即可得出关于m的一元二次方程,解之即可得出m的值,再根据a+b=﹣2m﹣1>0,即可确定m的值.
    【详解】
    解:(1)∵方程有两个不相等的实数根,
    ∴△==1m+17>0,
    解得:m>﹣,
    ∴当m>﹣时,方程有两个不相等的实数根.
    (2)设方程的两根分别为a、b,根据题意得:a+b=﹣2m﹣1,ab=.
    ∵2a、2b为边长为5的菱形的两条对角线的长,∴= =2m2+1m+9=52=25,解得:m=﹣1或m=2.
    ∵a>0,b>0,∴a+b=﹣2m﹣1>0,∴m=﹣1.
    若边长为5的菱形的两条对角线的长分别为方程两根的2倍,则m的值为﹣1.
    本题考查了根的判别式、根与系数的关系、菱形的性质以及解一元二次方程,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=1m+17>0;(2)根据根与系数的关系结合菱形的性质,找出关于m的一元二次方程.
    15、(1)1,1;(2)S△BDF=S正方形ABCD,证明见解析;(3)2
    【解析】
    (1)根据三角形的面积公式求解;
    (2)连接CF,通过证明BD∥CF,可得S△BDF=S△BDC=S正方形ABCD;
    (3)根据S△BDF= S△BDC可得S△BCH= S△DFH=,由三角形面积公式可求CH,DH的长,再由三角形面积公式求出EF的长即可.
    【详解】
    (1)∵当点E与点D重合时,
    ∴CE=CD=6,
    ∵四边形ABCD,四边形CEFG是正方形,
    ∴DF=CE=AD=AB=6,
    ∴S△BDF=×DF×AB=1,
    当点E为CD的中点时,如图,连接CF,
    ∵四边形ABCD和四边形CEFG均为正方形;
    ∴∠CBD=∠GCF=25°,
    ∴BD∥CF,
    ∴S△BDF=S△BDC=S正方形ABCD=×6×6=1,
    故答案为:1,1.
    (2)S△BDF=S正方形ABCD,
    证明:连接CF.
    ∵四边形ABCD和四边形CEFG均为正方形;
    ∴∠CBD=∠GCF=25°,
    ∴BD∥CF,
    ∴S△BDF= S△BDC=S正方形ABCD;
    (3)由(2)知S△BDF= S△BDC,
    ∴S△BCH= S△DFH=,
    ∴,
    ∴,,
    ∴,
    ∴EF=2,
    ∴正方形CEFG的边长为2.
    本题是四边形综合题,考查了正方形的性质,三角形的面积公式,平行线的性质,灵活运用这些性质进行推理是本题的关键.
    16、4
    【解析】
    根据矩形的性质得到BC=AD=8,∠B=90°,再根据折叠的性质得BE=EF=3,∠AFE=∠B=90°,则可计算出CE=5,然后在Rt△CEF中利用勾股定理计算FC.
    【详解】
    解:∵四边形是矩形,




    在中,

    本题考查了折叠的性质:叠前后图形的形状和大小不变,对应边和对应角相等.也考查了矩形的性质以及勾股定理.
    17、见解析
    【解析】
    由菱形的性质可得,,然后根据角角边判定,进而得到.
    【详解】
    证明:∵菱形ABCD,
    ∴,,
    ∵,,
    ∴,
    在与中,

    ∴,
    ∴.
    本题考查菱形的性质和全等三角形的判定与性质,根据菱形的性质得到全等条件是解题的关键.
    18、(5)555;(5)56,96,5.55;(5)555.
    【解析】
    试题分析:(5)由选项D的频数58,频率5.5,根据频数、频率和总量的关系即可求得这次被调查的学生人数.
    (5)由(5)求得的这次被调查的学生人数,根据频数、频率和总量的关系即可求得表中m,n,p的值,补全条形统计图.
    (5)应用用样本估计总体计算即可.
    试题解析:(5)∵,
    ∴这次被调查的学生有555人.
    (5).
    补全条形统计图如图:
    (5)∵,
    ∴估计该校全体学生中选择B选项的有555人.
    考点:5.频数、频率统计表;5.条形统计图;5.频数、频率和总量的关系;5.用样本估计总体.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、y=18/x
    【解析】
    函数经过一定点,将此点坐标代入函数解析式y=(k≠0)即可求得k的值.
    【详解】
    设反比例函数的解析式为y=(k≠0),函数经过点A(-6,-3),
    ∴-3=,得k=18,
    ∴反比例函数解析式为y=.
    故答案为:y=.
    此题比较简单,考查的是用待定系数法求反比例函数的解析式.
    20、22.5°
    【解析】
    根据正方形的性质就有∠ACD=∠ACB=45°=∠CAE+∠AEC,根据CE=AC就可以求出∠CAE=∠E=22.5°.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴∠ACD=∠ACB=45°.
    ∵∠ACB=∠CAE+∠AEC,
    ∴∠CAE+∠AEC=45°.
    ∵CE=AC,
    ∴∠CAE=∠E=22.5°.
    故答案为22.5°
    本题考查了正方形的性质的运用,等腰三角形的性质的运用,三角形的外角与内角的关系的运用及三角形内角和定理的运用.
    21、 (16,32) (−21009,−21010).
    【解析】
    根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8、A9等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2019=504×4+3即可找出点A2019的坐标.
    【详解】
    当x=1时,y=2,
    ∴点A1的坐标为(1,2);
    当y=−x=2时,x=−2,
    ∴点A2的坐标为(−2,2);
    同理可得:A3(−2,−4),A4(4,−4),A5(4,8),A6(−8,8),A7(−8,−16),A8(16,−16),A9(16,32),…,
    ∴A4n+1(22n,22n+1),A4n+2(−22n+1,22n+1),
    A4n+3(−22n+1,−22n+2),A4n+4(22n+2,−22n+2)(n为自然数).
    ∵2019=504×4+3,
    ∴点A2019的坐标为(−2504×2+1,−2504×2+2),即(−21009,−21010).
    故答案为(16,32), (−21009,−21010).
    此题主要考查一次函数与几何规律探索,解题的关键是根据题意得到坐标的变化规律.
    22、1
    【解析】
    根据全等三角形的性质及平行四边形的判定,可找出现1个平行四边形.
    【详解】
    解:两个全等的等边三角形,以一边为对角线构成的四边形是平行四边形,这样的两个平行四边形又可组成较大的平行四边形,从该图案中可以找出1个平行四边形.
    故答案为1.
    此题主要考查学生对平行四边形的判定的掌握情况和读图能力,注意找图过程中,要做到不重不漏.
    23、4或或
    【解析】
    分三种情况进行讨论:(1)△AEF为等腰直角三角形,得出AE上的高为AF=4;
    (2)利用勾股定理求出AE边上的高BF即可;
    (3)求出AE边上的高DF即可
    【详解】
    解:分三种情况:
    (1)当AE=AF=4时,
    如图1所示:
    △AEF的腰AE上的高为AF=4;
    (2)当AE=EF=4时,
    如图2所示:
    则BE=5-4=1,
    BF=;
    (3)当AE=EF=4时,
    如图3所示:
    则DE=7-4=3,
    DF=,
    故答案为4或或.
    本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论,有一定的难度.
    二、解答题(本大题共3个小题,共30分)
    24、
    【解析】
    分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,确定不等式组的解集.
    【详解】
    解:
    由(1)得:
    由(2)得:,
    所以,原不等式组的解为:
    本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    25、(1)见解析;(2)成立,见解析.
    【解析】
    (1)取AB的中点H,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECF,从而得到AE=EF;
    (2)成立,延长BA到M,使AM=CE,根据已知及正方形的性质利用ASA判定△AHE≌△ECF,从而得到AE=EF;
    【详解】
    (1)证明:取AB的中点H,连接EH;如图1所示
    ∵四边形ABCD是正方形,AE⊥EF;
    ∴∠1+∠AEB=90°,∠2+∠AEB=90°
    ∴∠1=∠2,
    ∵BH=BE,∠BHE=45°,且∠FCG=45°,
    ∴∠AHE=∠ECF=135°,AH=CE,
    在△AHE和△ECF中,

    ∴△AHE≌△ECF(ASA),
    ∴AE=EF;
    (2)解:AE=EF成立,
    理由如下:如图2,延长BA到M,使AM=CE,
    ∵∠AEF=90°,
    ∴∠FEG+∠AEB=90°.
    ∵∠BAE+∠AEB=90°,
    ∴∠BAE=∠FEG,
    ∴∠MAE=∠CEF.
    ∵AB=BC,
    ∴AB+AM=BC+CE,
    即BM=BE.
    ∴∠M=45°,
    ∴∠M=∠FCE.
    在△AME与△ECF中,

    ∴△AME≌△ECF(ASA),
    ∴AE=EF.
    本题考查正方形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
    26、(1)见解析;(2)见解析;(3)8,4.
    【解析】
    (1)根据矩形的性质画图即可;
    (2)根据菱形的性质画图即可;
    (3)根据矩形的面积公式和菱形的周长公式即可得到结论.
    【详解】
    解:(1)如图①所示,矩形ACBD即为所求;
    (2)如图②所示,菱形AFBE即为所求;
    (3)矩形ACBD的面积=2×4=8;菱形AFBE的周长=4×=4,
    故答案为:8,4.
    本题考查了作图-应用与设计作图.熟记矩形和菱形的性质以及正方形的性质是解题的关键所在.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024-2025学年邯郸市重点中学九年级数学第一学期开学质量检测模拟试题【含答案】:

    这是一份2024-2025学年邯郸市重点中学九年级数学第一学期开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年海南省海南中学数学九年级第一学期开学质量检测模拟试题【含答案】:

    这是一份2024-2025学年海南省海南中学数学九年级第一学期开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年甘肃张掖甘州中学九年级数学第一学期开学质量检测模拟试题【含答案】:

    这是一份2024-2025学年甘肃张掖甘州中学九年级数学第一学期开学质量检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map