2024-2025学年海南省海口市第一中学数学九上开学达标测试试题【含答案】
展开
这是一份2024-2025学年海南省海口市第一中学数学九上开学达标测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)将抛物线y=2(x-7)2+3平移,使平移后的函数图象顶点落在y轴上,则下列平移中正确的是( )
A.向上平移3个单位 B.向下平移3个单位
C.向左平移7个单位 D.向右平移7个单位
2、(4分)如图,阴影部分为一个正方形,此正方形的面积是( )\
A.2B.4C.6D.8
3、(4分)如图所示,矩形ABCD中,点E在DC上且DE:EC=2:3,连接BE交对角线AC于点O.延长AD交BE的延长线于点F,则△AOF与△BOC的面积之比为( )
A.9:4B.3:2C.25:9D.16:9
4、(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,若OA=2,则BD的长为( )
A.4B.3C.2D.1
5、(4分)下列各式中,最简二次根式为( )
A.B.C.D.
6、(4分)如图是甲、乙两个探测气球所在位置的海拔高度(单位:)关于上升时间(单位:)的函数图像.有下列结论:
①当时,两个探测气球位于同一高度
②当时,乙气球位置高;
③当时,甲气球位置高;
其中,正确结论的个数是( )
A.个B.个C.个D.个
7、(4分)当k<0时,一次函数y=kx﹣k的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
8、(4分)如图,直线y=kx+b交x轴于点A(﹣2,0),直线y=mx+n交x轴于点B(5,0),这两条直线相交于点C(1,p),则不等式组的解集为( )
A.x<5B.x<﹣2C.﹣2<x<5D.﹣2<x<1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,以A点为圆心,以相同的长为半径作弧,分别与射线AM,AN交于B,C两点,连接BC,再分别以B,C为圆心,以相同长(大于BC)为半径作弧,两弧相交于点D,连接AD,BD,CD.若∠MBD=40°,则∠NCD的度数为_____.
10、(4分)甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示。下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是___(填序号).
11、(4分)因式分解:_________.
12、(4分)小明家和丽丽家相距400米.里期天,小明接到丽丽电话后,两人各自从家同时出发,沿同一条路相向而行,小明出发3分钟后停下休息,等了一会,才与丽丽相遇,然后随丽丽一起返回自己家.若两人距小明家的距离(米)与他们步行的时间(分钟)之间的函数关系如图所示,结合图象可知,小明中途休息了___分钟.
13、(4分)将抛物线先向左平移个单位,再向下平移个单位,所得抛物线的解析式为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过220kW•h时实行“基础电价”;第二档是当用电量超过220kW•h时,其中的220kW•h仍按照“基础电价”计费,超过的部分按照“提高电价”收费.设每个家庭月用电量为xkW•h时,应交电费为y元.具体收费情况如图所示,请根据图象回答下列问题:
(1)“基础电价”是 元/kw•h;
(2)求出当x>220时,y与x的函数解析式;
(3)若小豪家六月份缴纳电费121元,求小豪家这个月用电量为多少kW•h?
15、(8分)如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O,连接DE.
(1)求证:△ADE≌△CED;
(2)求证:DE∥AC.
16、(8分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.
(1)求每分钟向储存罐内注入的水泥量.
(2)当3≤x≤5.5时,求y与x之间的函数关系式.
(3)储存罐每分钟向运输车输出的水泥量是 立方米,从打开输入口到关闭输出口共用的时间为 分钟.
17、(10分)如图,直线y=-x+4分别与x轴、y轴交于A、B两点.
(1)求A、B两点的坐标;
(2)已知点C坐标为(2,0),设点C关于直线AB的对称点为D,请直接写出点D的坐标.
18、(10分)A、B两店分另选5名销售员某月的销售额(单位:万元)进行分析,数据如下图表(不完整):
(1)根据图a数据填充表格b所缺的数据;
(2)如果A店想让一半以上的销售员达到销售目标,你认为月销售额定为多少合适?说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,正方形ABCD是出四个全等的角三角形围成的,若,,则EF的长为________。
20、(4分)某市出租车白天的收费起步价为10元,即路程不超过时收费10元,超过部分每千米收费2元,如果乘客白天乘坐出租车的路程为 ,乘车费为元,那么与之间的关系式为__________________.
21、(4分)某校要从甲、乙两名跳远运动员挑选一人参加校际比赛.在十次选拔比赛中,他们的方差分别为S甲2=1.32,S乙2=1.26,则应选________参加这项比赛(填“甲”或者“乙”)
22、(4分)如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为________.
23、(4分)一次函数的图像在轴上的截距是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.
(1)求一次函数解析式;
(2)求C点的坐标;
(3)求△AOD的面积.
25、(10分)计算
(1)﹣+;
(2)×﹣( +)(﹣).
26、(12分)如图,在平行四边形ABCD中,点M为边AD的中点,过点C作AB的垂线交AB于点E,连接ME,已知AM=2AE=4,∠BCE=30°.
(1)求平行四边形ABCD的面积;
(2)求证:∠EMC=2∠AEM .
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.
【详解】
依题意可知,原抛物线顶点坐标为(7,3),平移后抛物线顶点坐标为(0,t)(t为常数),则原抛物线向左平移7个单位即可.
故选C.
本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k (a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移; k值正上移,负下移”.
2、D
【解析】
根据等腰直角三角形的性质求出正方形的边长即可.
【详解】
解:如图,
∵△ABC是等腰直角三角形,AC=4,
∴AB=BC=2,
∴正方形的面积=1.
故选:D.
本题考查等腰直角三角形的性质,正方形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
3、C
【解析】
由矩形的性质可知:AB=CD,AB∥CD,进而可证明△AOB∽△COE,结合已知条件可得AO:OC=3:5,再根据相似三角形的性质:面积之比等于相似比的平方即可求出△AOF与△BOC的面积之比.
【详解】
解:∵四边形ABCD是矩形,
∴AB=CD,AB∥CD,
∴△AOB∽△COE,
∵DE:EC=2:3,
∴CE:CD=3:5,
∴CE:CD=CE:AB=CO:AO=3:5,
∴S△AOF:S△BOC=25:1.
故选C.
本题考查了矩形的性质、相似三角形的判定和性质,熟记两个三角形相似面积之比等于相似比的平方是解题的关键.
4、A
【解析】
因为矩形的对角线相等且互相平分,已知OA=2,则AC=2OA=4,又BD=AC,故可求.
【详解】
解:∵四边形ABCD是矩形
∴OC=OA,BD=AC
又∵OA=2,
∴AC=OA+OC=2OA=4
∴BD=AC=4
故选:A.
本题考查矩形的对角线的性质.熟练掌握矩形对角线相等且互相平分是解题的关键.
5、B
【解析】
根据最简二次根式具备的条件:被开方数不含分母,被开方数中不含能开得尽方的因数或因式,逐一进行判断即可得出答案.
【详解】
A被开方数中含有能开得尽方的因数54,不是最简二次根式,故错误;
B符合最简二次根式的条件,故正确;
C被开方数中含有分母6,不是最简二次根式,故错误;
D被开方数中含有能开得尽方的因式 ,不是最简二次根式,故错误;
故选:B.
本题主要考查最简二次根式,掌握最简二次根式具备的条件是解题的关键.
6、D
【解析】
根据图象进行解答即可.
【详解】
解:①当x=10时,两个探测气球位于同一高度,正确;
②当x>10时,乙气球位置高,正确;
③当0≤x<10时,甲气球位置高,正确;
故选:D.
本题考查了一次函数的应用、解题的关键是根据图象进行解答.
7、C
【解析】
试题分析:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限.故选C.
考点:一次函数图象与系数的关系.
8、B
【解析】
根据图象可得,y=kx+b<0,则x<﹣2,y=mx+n>0,则x<5,即可求解.
【详解】
解:根据图象可得,y=kx+b<0,则x<﹣2,
y=mx+n>0,则x<5,
∴不等式组的解集为:x<﹣2,
故选:B.
本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确的确定出x的值,是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、40°
【解析】
先根据作法证明△ABD≌△ACD,由全等三角形的性质可得∠BAD=∠CAD,∠BDA=∠CDA,然后根据三角形外角的性质可证∠NCD=∠MBD=40°.
【详解】
在△ABD和△ACD中,
∵AB=AC,
BD=CD,
AD=AD,
∴△ABD≌△ACD,
∴∠BAD=∠CAD,∠BDA=∠CDA.
∵∠MBD=∠BAD+∠BDA,∠NCD=∠CAD+∠CDA,
∴∠NCD=∠MBD=40°.
故答案为:40°.
本题考查了尺规作图,全等三角形的判定与性质,三角形外角的性质,熟练掌握三角形全等的判定与性质是解答本题的关键.
10、①②③.
【解析】
根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.
【详解】
由图象得出甲步行720米,需要9分钟,
所以甲的运动速度为:720÷9=80(m/分),
当第15分钟时,乙运动15−9=6(分钟),
运动距离为:15×80=1200(m),
∴乙的运动速度为:1200÷6=200(m/分),
∴200÷80=2.5,(故②正确);
当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);
此时乙运动19−9=10(分钟),
运动总距离为:10×200=2000(m),
∴甲运动时间为:2000÷80=25(分钟),
故a的值为25,(故④错误);
∵甲19分钟运动距离为:19×80=1520(m),
∴b=2000−1520=480,(故③正确).
故正确的有:①②③.
故答案为:①②③.
此题考查一次函数的应用,解题关键在于结合函数图象进行解答.
11、
【解析】
利用完全平方公式分解即可.
【详解】
解:=
本题考查了公式法分解因式,能用公式法进行因式分解的式子的特点需牢记.
能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.
能用完全平方公式法进行因式分解的式子的特点是:两项平方项的符号相同,另一项是两底数积的2倍.
12、1
【解析】
先求出丽丽的速度,然后再求得丽丽走200米所用时间,然后再减去3分钟即可.
【详解】
解:400÷8=50米/分钟.
200÷50=4分钟.
4−3=1分钟.
故答案为:1.
本题主要考查的是从函数图象获取信息,求得丽丽的速度是解题的关键.
13、
【解析】
二次函数图象平移规律:“上加下减,左加右减”,据此求解即可.
【详解】
将抛物线先向左平移个单位,再向下平移个单位后的解析式为:,
故答案为.
三、解答题(本大题共5个小题,共48分)
14、(1)0.5;(2)y=0.55x﹣11;(3)小豪家这个月用电量为1kW•h.
【解析】
(1)由用电220度费用为110元可得;
(2)当x>220时,待定系数法求解可得此时函数解析式;
(3)由121>110知,可将y=121代入(2)中函数解析式求解可得.
【详解】
(1)“基础电价”是=0.5元/度,
故答案为:0.5;
(2)当x>220时,设y=kx+b,
由图象可得:,
解得,
∴y=0.55x﹣11;
(3)∵y=121>110
∴令0.55x﹣11=121,
得:x=1.
答:小豪家这个月用电量为1kW•h.
本题主要考查一次函数的图象与待定系数求函数解析式,分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,理解每个区间的实际意义是解题关键.
15、(1)证明见解析;(2)证明见解析.
【解析】
(1)∵ 四边形ABCD是矩形,∴AD=BC,AB=CD.
又∵AC是折痕,∴BC = CE = AD ,AB =AE =CD.
又∵DE = ED,∴ΔADE ≌ΔCED(SSS);
(2)∵ΔADE ≌ΔCED,∴∠EDC =∠DEA,
又∵ΔACE与ΔACB关于AC所在直线对称,∴∠OAC =∠CAB.
又∵∠OCA =∠CAB,∴∠OAC =∠OCA.
∵∠DOE = ∠COA,
∴∠OAC =∠DEA,
∴DE∥AC.
考点:1.折叠问题;2.矩形的性质;3.折叠对称的性质;4.全等三角形的判定和性质;5. 平行的判定.
16、 (1)5立方米;(2)y=4x+3;(3)1,11.
【解析】
【分析】(1)用体积变化量除以时间变化量即可求出注入速度;
(2)根据题目数据利用待定系数法求解;
(3)由(2)比例系数k=4即为两个口同时打开时水泥储存罐容量的增加速度,则输出速度为5﹣4=1,再根据总输出量为8求解即可.
【详解】(1)每分钟向储存罐内注入的水泥量为15÷3=5立方米;
(2)设y=kx+b(k≠0),把(3,15)(5.5,25)代入,则有
,解得:,
∴当3≤x≤5.5时,y与x之间的函数关系式为y=4x+3;
(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为5﹣4=1立方米;
只打开输出口前,水泥输出量为5.5﹣3=2.5立方米,之后达到总量8立方米需输出8﹣2.5=5.5立方米,用时5.5分钟
∴从打开输入口到关闭输出口共用的时间为:5.5+5.5=11分钟,
故答案为1,11.
【点睛】本题考查了一次函数的应用,解题的关键是读懂图象、弄清题意、熟练应用一次函数的图象和性质以及在实际问题中比例系数k代表的意义.
17、 (1) A坐标(4,0)、B 坐标(0 , 4)(2) D(4, 2).
【解析】
分析:(1)令x=0求出与y轴的交点,令y=0求出与x轴的交点;
(2)由(1)可得△AOB为等腰直角三角形,则∠BAO=45°,因为点D和点C关于直线AB对称,所以∠BAO=∠BAD=45°,所以AD∥y轴且AD=AC,即可求得点D的坐标。
详解:(1) ∵直线y=-x+4分别与x轴、y轴交于A、B两点,
当x=0时,则y=4;当y=0,则x=4,
∴点A坐标为(4,0)、点B 坐标为(0, 4),
(2)D点坐标为D(4,2).
点睛:本题考查了一次函数与坐标轴的交点,等腰直角三角形的判定与性质,轴对称的性质,熟练掌握一次函数与坐标轴的交点、轴对称的性质是解答本题的关键.
18、(1)见解析;(2)月销售额定为8.5万合适,见解析.
【解析】
(1)众数就是出现次数最多的数,据此即可求解;中位数就是大小处于中间位置的数,根据定义即可求解;
(2)利用中位数的意义进行回答.
【详解】
(1)A店的中位数为8.5,众数为8.5;
B店的平均数为:.
故答案为:8.5;8.5;8.5;
(2)如果A店想让一半以上的销售员达到销售目标,我认为月销售额定为8.5万合适.
因为中位数为8.5,所以月销售额定为8.5万,有一半左右的营业员能达到销售目标.
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据全等三角形的性质得到BH=AE=5,得到EH=BE-BH=7,根据勾股定理计算即可.
【详解】
,
同理,HF=7,
故答案为.
本题考查了全等三角形的性质和勾股定理,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.
20、
【解析】
根据乘车费用=起步价+超过3千米的付费得出.
【详解】
解:依题意有:y=10+2(x-3)=2x+1.
故答案为:y=2x+1.
根据题意,找到所求量的等量关系是解决问题的关键.本题乘车费用=起步价+超过3千米的付费
21、乙
【解析】
根据方差的意义即可解答.
【详解】
∵S甲2=1.32>S乙2=1.26
∴乙更加稳定
本题考查了方差的应用,方差是用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)的统计量. 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.
22、 ;
【解析】
树高等于AC+BC,在直角△ABC中,用勾股定理求出BC即可.
【详解】
由勾股定理得,BC=,所以AC+BC=1+.
故答案为().
本题考查了勾股定理的实际应用,解题的关键是在实际问题的图形中得到直角三角形.
23、1
【解析】
求得一次函数与y轴的交点的纵坐标即为一次函数y=x+1的图象在y轴上的截距.
【详解】
解:令x=0,得y=1;
故答案为:1.
本题考查了一次函数的性质,掌握一次函数的性质是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)y=x+1;(2)C(0,1);(3)1
【解析】
试题分析:(1)首先根据正比例函数解析式求得m的值,再进一步运用待定系数法求得一次函数的解析式;
(2)根据(1)中的解析式,令x=0求得点C的坐标;
(3)根据(1)中的解析式,令y=0求得点D的坐标,从而求得三角形的面积.
试题解析:
(1)∵正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),
∴2m=2,
m=1.
把(1,2)和(-2,-1)代入y=kx+b,得
解得:
则一次函数解析式是y=x+1;
(2)令x=0,则y=1,即点C(0,1);
(3)令y=0,则x=-1.
则△AOD的面积=.
【点睛】运用了待定系数法求函数解析式、直线与坐标轴的交点的求法.
25、(1) (2)1
【解析】
试题分析:(1)先把二次根式化简再合并即可;
(2)进行二次根式的乘法运算即可.
试题解析:(1)原式=
= +3;
(2)原式=3-5+3
=1.
26、(1) ;(2)证明见解析.
【解析】
(1)由AM=2AE=4,利用平行四边形的性质可求出BC=AD=1,利用直角三角形的性质得出BE、CE的长,进而得出答案;
(2) 延长EM,CD交于点N,连接CM.通过证明△AEM≌△DNM,可得EM=MN,然后由直角三角形斜边的中线等于斜边的一半可证MN=MC,然后根据三角形外角的性质证明即可.
【详解】
(1)解:∵M为AD的中点,AM=2AE=4,
∴AD=2AM=1.在▱ABCD的面积中,BC=CD=1,
又∵CE⊥AB,
∴∠BEC=90°,
∵∠BCE=30°,
∴BE=BC=4,
∴AB=6,CE=4,
∴▱ABCD的面积为:AB×CE=6×4=24;
(2)证明:延长EM,CD交于点N,连接CM.
∵在▱ABCD中,AB∥CD,
∴∠AEM=∠N,
在△AEM和△DNM中
∵∠AEM=∠N,
AM=DM,
∠AME=∠DMN,
∴△AEM≌△DNM(AAS),
∴EM=MN,
又∵AB∥CD,CE⊥AB,
∴CE⊥CD,
∴CM是Rt△ECN斜边的中线,
∴MN=MC,
∴∠N=∠MCN,
∴∠EMC=2∠N=2∠AEM.
此题主要考查了平行四边形的性质、全等三角形的判定与性质、三角形外角的性质、直角三角形的性质等知识.熟练应用平行四边形的性质是解(1)关键,正确作出辅助线是解(2)的关键.
题号
一
二
三
四
五
总分
得分
平均数
中位数
众数
A店
8.5
B店
8
10
相关试卷
这是一份2024-2025学年海南省海南中学数学九年级第一学期开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年海南省定安县联考九上数学开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年海口市重点中学数学九上开学质量跟踪监视试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。