搜索
    上传资料 赚现金
    专题32 最值问题-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题32 最值问题(原卷版) .doc
    • 解析
      专题32 最值问题(解析版) .doc
    专题32 最值问题-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版)01
    专题32 最值问题-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版)02
    专题32 最值问题-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版)03
    专题32 最值问题-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版)01
    专题32 最值问题-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版)02
    专题32 最值问题-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版)03
    还剩4页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题32 最值问题-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版)

    展开
    这是一份专题32 最值问题-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版),文件包含专题32最值问题原卷版doc、专题32最值问题解析版doc等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。

    一、选择题
    1. (2024四川乐山)已知二次函数,当时,函数取得最大值;当时,函数取得最小值,则t的取值范围是( )
    A. B. C. D.
    2. (2024四川南充)如图,在中,,平分交于点D,点E为边上一点,则线段长度的最小值为( )
    A. B. C. 2D. 3
    3. (2024四川南充)当时,一次函数有最大值6,则实数m的值
    为( )
    A. 或0B. 0或1C. 或D. 或1
    4. (2024四川泸州)如图,在边长为6的正方形中,点E,F分别是边上的动点,且满足,与交于点O,点M是的中点,G是边上的点,,则的最小值是( )

    A. 4B. 5C. 8D. 10
    5. (2024四川宜宾)如图,在中,,以为边作,,点D与点A在的两侧,则的最大值为( )
    A. B. C. 5D. 8
    6. (2024四川达州)如图,是等腰直角三角形,,,点,分别在,边上运动,连结,交于点,且始终满足,则下列结论:①;②;③面积的最大值是;④的最小值是.其中正确的是( )

    A. ①③B. ①②④C. ②③④D. ①②③④

    二、填空题
    1. (2024四川广安)如图,在中,,,,点为直线上一动点,则的最小值为______.
    2. (2024四川成都市)如图,在平面直角坐标系中,已知,,过点作轴的垂线,为直线上一动点,连接,,则的最小值为______.
    3. (2024江苏扬州)如图,已知两条平行线、,点A是上的定点,于点B,点C、D分别是、上的动点,且满足,连接交线段于点E,于点H,则当最大时,的值为_____.
    4. (2024四川广元)如图,在中,,,则的最大值为______.

    5. (2024河南省)如图,在中,,,线段绕点C在平面内旋转,过点B作的垂线,交射线于点E.若,则的最大值为_________,最小值为_________.
    6. (2024四川宜宾)如图,正方形的边长为1,M、N是边、上的动点.若,则的最小值为___________.
    7. (2024四川内江)如图,在中,,,是边上一点,且,点是内心,的延长线交于点,是上一动点,连接、,则的最小值为________.

    三、解答题
    1. (2024河南省)从地面竖直向上发射的物体离地面的高度满足关系式,其中是物体运动的时间,是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.
    (1)小球被发射后_________时离地面的高度最大(用含的式子表示).
    (2)若小球离地面的最大高度为,求小球被发射时的速度.
    (3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为.”已知实验楼高,请判断他的说法是否正确,并说明理由.
    2. (2024广西)课堂上,数学老师组织同学们围绕关于x的二次函数的最值问题展开探究.
    【经典回顾】二次函数求最值的方法.
    (1)老师给出,求二次函数的最小值.
    ①请你写出对应的函数解析式;
    ②求当x取何值时,函数y有最小值,并写出此时的y值;
    【举一反三】老师给出更多a的值,同学们即求出对应的函数在x取何值时,y的最小值.记录结果,并整理成下表:
    注:*为②的计算结果.
    【探究发现】老师:“请同学们结合学过函数知识,观察表格,谈谈你的发现.”
    甲同学:“我发现,老师给了a值后,我们只要取,就能得到y的最小值.”
    乙同学:“我发现,y的最小值随a值的变化而变化,当a由小变大时,y的最小值先增大后减小,所以我猜想y的最小值中存在最大值.”
    (2)请结合函数解析式,解释甲同学的说法是否合理?
    (3)你认为乙同学的猜想是否正确?若正确,请求出此最大值;若不正确,说明理由.
    3. (2024江苏连云港)【问题情境】
    (1)如图1,圆与大正方形的各边都相切,小正方形是圆的内接正方形,那么大正方形面积是小正方形面积的几倍?小昕将小正方形绕圆心旋转45°(如图2),这时候就容易发现大正方形面积是小正方形面积的__________倍.由此可见,图形变化是解决问题的有效策略;
    【操作实践】
    (2)如图3,图①是一个对角线互相垂直的四边形,四边a、b、c、d之间存在某种数量关系.小昕按所示步骤进行操作,并将最终图形抽象成图4.请你结合整个变化过程,直接写出图4中以矩形内一点P为端点的四条线段之间的数量关系;
    【探究应用】
    (3)如图5,在图3中“④”的基础上,小昕将绕点逆时针旋转,他发现旋转过程中存在最大值.若,,当最大时,求AD的长;
    (4)如图6,在中,,点D、E分别在边AC和BC上,连接DE、AE、BD.若,,求的最小值.
    4. (2024山东烟台)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.
    (1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?
    (2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?
    5. (2024山东枣庄)在平面直角坐标系中,点在二次函数的图像上,记该二次函数图像的对称轴为直线.
    (1)求的值;
    (2)若点在的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当时,求新的二次函数的最大值与最小值的和;
    (3)设的图像与轴交点为,.若,求的取值范围.
    6. (2024天津市)已知抛物线的顶点为,且,对称轴与轴相交于点,点在抛物线上,为坐标原点.
    (1)当时,求该抛物线顶点的坐标;
    (2)当时,求的值;
    (3)若是抛物线上的点,且点在第四象限,,点在线段上,点在线段上,,当取得最小值为时,求的值.
    7. (2024安徽省)已知抛物线(b为常数)的顶点横坐标比抛物线的顶点横坐标大1.
    (1)求b的值;
    (2)点在抛物线上,点在抛物线上.
    (ⅰ)若,且,,求h的值;
    (ⅱ)若,求h的最大值.
    8. (2024四川凉山)如图,在菱形中,,是边上一个动点,连接,的垂直平分线交于点,交于点.连接.

    (1)求证:;
    (2)求的最小值.
    a

    0
    2
    4

    x

    *
    2
    0

    y的最小值

    *

    相关试卷

    专题34 重要的数学思想方法问题-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版): 这是一份专题34 重要的数学思想方法问题-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版),文件包含专题34重要的数学思想方法问题原卷版doc、专题34重要的数学思想方法问题解析版doc等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。

    专题30 尺规作图类问题-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版): 这是一份专题30 尺规作图类问题-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版),文件包含专题30尺规作图类问题原卷版doc、专题30尺规作图类问题解析版doc等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。

    专题27 统计-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版): 这是一份专题27 统计-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版),文件包含专题27统计原卷版doc、专题27统计解析版doc等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题32 最值问题-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map