高考数学一轮复习全程复习构想·数学(文)【统考版】第二节 不等式的证明(课件)
展开·最新考纲·通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.
·考向预测·考情分析:综合法、分析法、比较法证明不等式是高考考查的热点,题型仍将以解答题为主.学科素养:通过不等式的证明考查逻辑推理的核心素养.
一、必记2个知识点1.比较法比较法是证明不等式最基本的方法,可分为作差比较法和作商比较法两种.
2.综合法和分析法(1)综合法一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理,论证而得出命题成立,这种证明方法叫做综合法.综合法又叫顺推证法或由因导果法.(2)分析法证明命题时,从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法,这是一种执果索因的思考和证明方法.
(2)(a+b)3+(b+c)3+(c+a)3≥24.
反思感悟 用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、 条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野.
反思感悟 利用反证法证明问题的一般步骤(1)否定原结论;(2)从假设出发,导出矛盾;(3)证明原命题正确.
【对点训练】已知a+b+c>0,ab+bc+ca>0,abc>0,求证:a,b,c>0.
证明:(1)设a<0,因为abc>0,所以bc<0.又由a+b+c>0,则b+c>-a>0,所以ab+bc+ca=a(b+c)+bc<0,与题设矛盾.(2)若a=0,则与abc>0矛盾,所以必有a>0.同理可证:b>0,c>0.综上可证a,b,c>0.
高考数学一轮复习全程复习构想·数学(文)【统考版】第三节 圆的方程(课件): 这是一份高考数学一轮复习全程复习构想·数学(文)【统考版】第三节 圆的方程(课件),共37页。PPT课件主要包含了必备知识基础落实,关键能力考点突破,答案D,答案A,答案C,答案1B,答案B等内容,欢迎下载使用。
高考数学一轮复习全程复习构想·数学(文)【统考版】第二节 平面向量基本定理及坐标表示(课件): 这是一份高考数学一轮复习全程复习构想·数学(文)【统考版】第二节 平面向量基本定理及坐标表示(课件),共41页。PPT课件主要包含了必备知识基础落实,关键能力考点突破,微专题,不共线,λ1e1+λ2e2,y轴正方向相同,λx1λy1,答案B,答案A,答案C等内容,欢迎下载使用。
高考数学一轮复习全程复习构想·数学(文)【统考版】第二节 导数在研究函数中的应用(课件): 这是一份高考数学一轮复习全程复习构想·数学(文)【统考版】第二节 导数在研究函数中的应用(课件),共20页。PPT课件主要包含了必备知识基础落实,单调递增,单调递减,不具备单调性,f′x<0,f′x>0,连续不断,答案C,-16,答案A等内容,欢迎下载使用。