2024-2025学年广东汕尾甲子镇瀛江学校数学九年级第一学期开学复习检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一次函数y=kx+b,当k<0,b<0时,它的图象大致为( )
A.B.C.D.
2、(4分)在直角坐标系中,函数与的图像大数是( )
A.B.
C.D.
3、(4分)化简的结果是
A.+1B.C.D.
4、(4分)在“美丽乡村”评选活动中,某乡镇5个村的得分如下:90,88,96,92,96,这组数据的中位数和众数分别是( )
A.90,96B.92,96C.92,98D.91,92
5、(4分)在函数的图象上的点是( )
A.(-2,12)B.(2,- 12)C.(-4,- 6)D.(4,- 6)
6、(4分)下列说法:
①对角线互相垂直的四边形是菱形;
②矩形的对角线垂直且互相平分;
③对角线相等的四边形是矩形;
④对角线相等的菱形是正方形;
⑤邻边相等的矩形是正方形.其中正确的是( )
A.个B.个C.个D.个
7、(4分)函数 y=ax﹣a 的大致图象是( )
A.B.C.D.
8、(4分)用一条直线 m 将如图 1 的直角铁皮分成面积相等的两部分.图 2、图 3 分别是甲、乙两同学给出的作法,对于两人的作法判断正确的是( )
A.甲正确,乙不正确B.甲不正确,乙正确
C.甲、乙都正确D.甲、乙都不正确
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)直线与直线平行,且经过,则直线的解析式为:__________.
10、(4分)如图,正方形ABCD的边长为4,点E为AD的延长线上一点,且DE=DC,点P为边AD上一动点,且PC⊥PG,PG=PC,点F为EG的中点.当点P从D点运动到A点时,则CF的最小值为___________
11、(4分)矩形中,对角线交于点,,则的长是__________.
12、(4分)如图,在ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为__.
13、(4分)已知实数a在数轴上的位置如图所示,化简: +|a﹣1|=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)化简分式()÷ ,并在 2,3,4,5 这四个数中取一个合适的数作为 a 的值代入求值.
15、(8分)如图,将▱ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.
(1)求证:四边形CEDF是平行四边形;
(2)若AB=3,AD=4,∠A=60°,求CE的长.
16、(8分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.
(1)求证:AE=2CE;
(2)连接CD,请判断△BCD的形状,并说明理由.
17、(10分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF,请你添加一个条件(不需再添加任何线段或字母),使之能推出四边形ABCD为平行四边形,请证明.你添加的条件是 .
18、(10分)阅读下列题目的解题过程:
已知为的三边,且满足,试判断的形状.
解:∵ ①
∴ ②
∴ ③
∴是直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;
(2)该步正确的写法应是: ;
(3)本题正确的结论为: .
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若点与点关于原点对称,则_______________.
20、(4分)计算的结果是_______________.
21、(4分)抛物线有最_______点.
22、(4分)计算:
23、(4分)已知关于x的方程x2+(3﹣2k)x+k2+1=0的两个实数根分别是x1、x2,当|x1|+|x2|=7时,那么k的值是__.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,△ABC中,已知AB=AC,D是AC上的一点,CD=9,BC=15,BD=1.
(1)判断△BCD的形状并证明你的结论.
(2)求△ABC的面积.
25、(10分)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分、80分、90分、100分,并根据统计数据绘制了如下不完整的统计图表:
乙校成绩统计表
(1)在图①中,“80分”所在扇形的圆心角度数为________;
(2)请你将图②补充完整;
(3)求乙校成绩的平均分;
(4)经计算知s甲2=135,s乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.
26、(12分)如图,平行四边形ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CD于点E,连接AE,AE⊥AD.
(1)若BG=1,BC=,求EF的长度;
(2)求证:CE+BE=AB.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据一次函数的性质可得出结论.
【详解】
解:因为 一次项系数 则随的增大而减少,函数经过二,四象限;
常数项 则函数一定经过三、四象限;
因而一次函数的图象一定经过第二、三、四象限.
故选B.
本题考查了一次函数的图像和性质,熟练掌握函数的性质是解题关键.
2、B
【解析】
根据四个选项图像可以判断 过原点且k<0, ,-k>0 即可判断.
【详解】
解:A . 与图像增减相反,得到k<0,所以 与y轴交点大于0 故错误;
B. 与图像增减相反,得到k<0,所以 与y轴交点大于0 故正确;
C. 与图像增减相反,为递增一次函数且不过原点,故错误;
D .过原点,而图中两条直线都不过原点,故错误.
故选 B
此题主要考查了一次函数图像的性质,熟记k>0,y随x的增大而增大;k<0,y随x的增大而减小;常数项为0,函数过原点.
3、D
【解析】
试题分析:.故选D.
4、B
【解析】
众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.
【详解】
众数是一组数据中出现次数最多的数,在这一组数据中96出现了2次,次数最多,故众数是96;
将这组数据从小到大的顺序排列为:88,90,1,96,96,处于中间位置的那个数是1,那么由中位数的定义可知,这组数据的中位数是1.
故选:B.
本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
5、C
【解析】
根据横坐标与纵坐标的乘积为24即可判断.
【详解】
解:∵函数的图象上的点的横坐标与纵坐标的乘积为24,
又∵-2×12=-24,2×(-12)=-24,-4×(-6)=24,4×(-6)=-24,
∴(-4,-6)在的图象上,
故选:C.
本题考查反比例函数图象上的点的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
6、B
【解析】
利用正方形的判定和性质,菱形的判定和性质,矩形的判定和性质进行依次判断可求解.
【详解】
解:①对角线互相垂直的四边形不一定是菱形,故①错误;
②矩形的对角线相等且互相平分,故②错误;
③对角线相等的四边形不一定是矩形,故③错误;
④对角线相等的菱形是正方形,故④正确,
⑤邻边相等的矩形是正方形,故⑤正确
故选B.
本题考查了正方形的判定和性质,菱形的判定和性质,矩形的判定和性质,灵活运用这些性质和判定解决问题是本题的关键.
7、C
【解析】
将y=ax-a化为y= a(x-1),可知图像过点(1,0),进行判断可得答案.
【详解】
解:一次函数y=ax-a=a(x-1)过定点(1,0),而选项A 、B、 D中的图象都不过点(1,0), 所以C项图象正确.
故本题正确答案为C.
本题主要考查一次函数的图象和一次函数的性质.
8、C
【解析】
根据图形中所画出的虚线,可以利用图形中的长方形、梯形的面积比较得出直线两旁的面积的大小关系.
【详解】
如图:图形2中,直线m经过了大长方形和小长方形的对角线的交点,所以两旁的图形的面积都是大长方形和小长方形面积的一半,所以这条直线把这个图形分成了面积相等的两部分,即甲做法正确;
图形3中,经过大正方形和图形外不添补的长方形的对角线的交点,直线两旁的面积都是大正方形面积的一半-添补的长方形面积的一半,所以这条直线把这个图形分成了面积相等的两部分,即乙做法正确.
故选C.
此题主要考查了中心对称,根据图形中的割补情况,抓住经过对角线的交点的直线都能把长方形分成面积相等的两部分这一特点,即可解决问题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
由直线与直线平行,可知k=1,然后把代入中即可求解.
【详解】
∵直线与直线平行,
∴k=1,
把代入,得
1+b=4,
∴b=1,
∴.
故答案为:.
本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y1=k1x+b1平行,那么k1=k1.也考查了一次函数图像上点的坐标满足一次函数解析式.
10、
【解析】
由正方形ABCD的边长为4,得出AB=BC=4,∠B=90°,得出AC=,当P与D重合时,PC=ED=PA,即G与A重合,则EG的中点为D,即F与D重合,当点P从D点运动到A点时,则点F运动的路径为DF,由D是AE的中点,F是EG的中点,得出DF是△EAG的中位线,证得∠FDA=45°,则F为正方形ABCD的对角线的交点,CF⊥DF,此时CF最小,此时CF=AG=.
【详解】
解:连接FD
∵正方形ABCD的边长为4,
∴AB=BC=4,∠B=90°,
∴AC=,
当P与D重合时,PC=ED=PA,即G与A重合,
∴EG的中点为D,即F与D重合,
当点P从D点运动到A点时,则点F运动的轨迹为DF,
∵D是AE的中点,F是EG的中点,
∴DF是△EAG的中位线,
∴DF∥AG,
∵∠CAG=90°,∠CAB=45°,
∴∠BAG=45°,
∴∠EAG=135°,
∴∠EDF=135°,
∴∠FDA=45°,
∴F为正方形ABCD的对角线的交点,CF⊥DF,
此时CF最小,
此时CF=AG=;
故答案为:.
本题主要考查了正方形的性质,掌握正方形的性质是解题的关键.
11、
【解析】
根据矩形的对角线互相平分且相等可得OA=OC,然后由勾股定理列出方程求解得出BC的长和AC的长,然后根据矩形的对角线互相平分可得AO的长。
【详解】
解:如图,
在矩形ABCD中,OA=OC,
∵∠AOB=60°,∠ABC=90°
∴∠BAC=30°
∴AC=2BC
设BC=x,则AC=2x
∴
解得x=,则AC=2x=2
∴AO==.
本题考查了矩形的对角线互相平分且相等的性质和含30°的直角三角形的性质,以及勾股定理的应用,是基础题。
12、1
【解析】
由基本作图得到,平分,故可得出四边形是菱形,由菱形的性质可知,故可得出的长,再由勾股定理即可得出的长,进而得出结论.
【详解】
解:连结,与交于点,
四边形是平行四边形,,
四边形是菱形,
,,.
,
在中,,
.
故答案为:1.
本题考查的是作图基本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.
13、1﹣2a.
【解析】
利用数轴上a的位置,进而得出a和a-1的取值范围,进而化简即可.
【详解】
由数轴可得:﹣1<a<0,
则+|a﹣1|=﹣a+1﹣a=1﹣2a.
故答案为1﹣2a.
此题主要考查了二次根式的性质与化简,绝对值得意义,正确化简二次根式是解题关键.
三、解答题(本大题共5个小题,共48分)
14、,取代入,原式.
【解析】
先根据分式混合运算顺序和运算法则化简原式,再选取是分式有意义a的值代入计算可得.
【详解】
解:原式=·
=·
=·
=a+3,
∵a≠﹣3,2,3,
∴a=4或5,
当a=4时,原式=4+3=7;
当a=5时,原式=5+3=8.
本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则及分式有意义的条件.
15、 (1)证明见解析;(2)CE=.
【解析】
(1)利用平行四边形的性质得出AD=BC,AD∥BC,进而利用已知得出DE=FC,DE∥FC,进而得出答案;
(2)首先过点D作DN⊥BC于点N,再利用平行四边形的性质结合勾股定理得出DF的长,进而得出答案.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∵DE=AD,F是BC边的中点,
∴DE=FC,DE∥FC,
∴四边形CEDF是平行四边形;
(2)过点D作DN⊥BC于点N,
∵四边形ABCD是平行四边形,∠A=60°,
∴∠BCD=∠A=60°,
∵AB=3,AD=4,
∴FC=2,NC=DC=,DN=,
∴FN=,则DF=EC==.
本题考查了平行四边形的判定与性质以及勾股定理等知识,熟练应用平行四边形的判定方法是解题关键.
16、见解析
【解析】
(1)连接BE,根据线段垂直平分线的性质可得AE=BE,利用等边对等角的性质可得∠ABE=∠A;结合三角形外角的性质可得∠BEC的度数,再在Rt△BCE中结合含30°角的直角三角形的性质,即可证明第(1)问的结论;
(2)根据直角三角形斜边中线的性质可得BD=CD,再利用直角三角形锐角互余的性质可得到∠ABC=60°,至此不难判断△BCD的形状
【详解】
(1)证明:连结BE,如图.
∵DE是AB的垂直平分线,
∴AE=BE,
∴∠ABE=∠A=30°,
∴∠CBE=∠ABC-∠ABE=30°,
在Rt△BCE中,BE=2CE,
∴AE=2CE.
(2)解:△BCD是等边三角形.
理由如下:
∵DE垂直平分AB,
∴D为AB的中点.
∵∠ACB=90°,
∴CD=BD.
又∵∠ABC=60°,
∴△BCD是等边三角形.
此题考查了线段垂直平分线的性质、30°角的直角三角形的性质,等腰三角形的性质,直角三角形斜边的中线等于斜边的一半,等边三角形的判定,熟练掌握30°角的直角三角形的性质是解(1)的关键,熟练掌握直角三角形斜边的中线等于斜边的一半是解(2)的关键,
17、条件是:∠F=∠CDE,理由见解析.
【解析】
由题目的已知条件可知添加∠F=∠CDE,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB,进而证明四边形ABCD为平行四边形.
【详解】
条件是:∠F=∠CDE,
理由如下:
∵∠F=∠CDE
∴CD∥AF
在△DEC与△FEB中,
,
∴△DEC≌△FEB
∴DC=BF,
∵AB=BF
∴DC=AB
∴四边形ABCD为平行四边形
故答案为:∠F=∠CDE.
此题考查平行四边形的判定,全等三角形的判定与性质,解题关键在于证明△DEC≌△FEB
18、故答案为:(1)③;(2) 当a−b=0时,a=b;当a−b≠0时,a+b=c;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形.
【解析】
(1)上述解题过程,从第三步出现错误,错误原因为在等式两边除以,没有考虑是否为0;
(2)正确的做法为:将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;
(3)根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.
【详解】
(1)上述解题过程,从第③步开始出现错误;
(2)正确的写法为:c (a−b)=(a+b)(a−b),
移项得:c (a−b)−(a+b)(a−b)=0,
因式分解得:(a−b)[c−(a+b)]=0,
则当a−b=0时,a=b;当a−b≠0时,a+b=c;
(3)△ABC是直角三角形或等腰三角形或等腰直角三角形。
故答案为:(1)③;(2) 当a−b=0时,a=b;当a−b≠0时,a+b=c;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形
此题考查勾股定理的逆定理,因式分解的应用,解题关键在于掌握运算法则.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
直接利用关于原点对称点的性质得出a,b的值.
【详解】
解:∵点A(a,1)与点B(−3,b)关于原点对称,
∴a=3,b=−1,
∴ab=3-1=.
故答案为:.
此题主要考查了关于原点对称的点的性质,正确记忆横纵坐标的关系是解题关键.
20、
【解析】
应用二次根式的乘除法法则()及同类二次根式的概念化简即可.
【详解】
解:
故答案为:
本题考查了二次根式的化简,综合运用二次根式的相关概念是解题的关键.
21、低
【解析】
因为:,根据抛物线的开口向上可得答案.
【详解】
解:因为:,所以根据抛物线的开口向上,抛物线图像有最低点.
故答案:低.
本题考查的符号决定抛物线的图像的开口方向,掌握抛物线的图像特点是解题关键.
22、2.
【解析】
根据运算法则进行运算即可.
【详解】
原式==2
此是主要考查二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
23、﹣1.
【解析】
先根据方程有两个实数根,确定△≥0,可得k≤,由x1•x1=k1+1>0,可知x1、x1,同号,分情况讨论即可.
【详解】
∵x1+(3﹣1k)x+k1+1=0的两个实数根分别是x1、x1,
∴△=(3﹣1k)1﹣4×1×(k1+1)≥0,
9﹣11k+4k1﹣4k1﹣4≥0,
k≤,
∵x1•x1=k1+1>0,
∴x1、x1,同号,
分两种情况:
①当x1、x1同为正数时,x1+x1=7,
即1k﹣3=7,
k=5,
∵k≤,
∴k=5不符合题意,舍去,
②当x1、x1同为负数时,x1+x1=﹣7,
即1k﹣3=﹣7,
k=﹣1,
故答案为:﹣1.
本题考查了根与系数的关系和根的判别式.解此题时很多学生容易顺理成章的利用两根之积与和公式进行解答,解出k值,而忽略了限制性条件△≥0时k≤.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)75
【解析】
(1)利用勾股定理的逆定理即可直接证明△BCD是直角三角形;
(2)设AD=x,则AC=x+9,在直角△ABD中,利用勾股定理即可列出方程,解方程,即可求解.
【详解】
(1)∵CD=9,BD=1
∴CD2+BD2=81+144=225
∵BC=15
∴BC2=225
∴CD2+BD2=BC2
∴△BCD是直角三角形
(2)设AD=x,则AC=x+9
∵AB=AC
∴AB=x+9
∵∠BDC=90°
∴∠ADB=90°
∴AB2=AD2+BD2
即(x+9)2=x2+12
解得:x=
∴AC=+9=
∴S△ABC=AC⋅BD==75
故答案为:75
本题考查了利用勾股定理解直角三角形及勾股定理的逆定理的应用,勾股定理是直角三角形的一个性质,勾股定理的逆定理是判定直角三角形的一种方法.
25、 (1)54°;(2)补图见解析;(3)85分;(4)甲校20名同学的成绩相对乙校较整齐.
【解析】
试题分析:(1)根据统计图可知甲班70分的有6人,从而可求得总人数,然后可求得成绩为80分的同学所占的百分比,最后根据圆心角的度数=360°×百分比即可求得答案;
(2)用总人数减去成绩为70分、80分、90分的人数即可求得成绩为100分的人数,从而可补全统计图;
(3)先求得乙班成绩为80分的人数,然后利用加权平均数公式计算平均数;
(4)根据方差的意义即可做出评价.
试题解析:(1)6÷30%=20,
3÷20=15%,
360°×15%=54°;
(2)20-6-3-6=5,统计图补充如下:
(3)20-1-7-8=4,
=85;
(4)∵S甲2<S乙2,
∴甲班20同名同学的成绩比较整齐.
26、;证明见解析.
【解析】
(1)根据勾股定理得到CG==3,推出BG=EG=1,得到CE=2,根据平行四边形的性质得到AB∥CD,于是得到结论;
(2)延长AE交BC于H,根据平行四边形的性质得到BC∥AD,根据平行线的性质得到∠AHB=∠HAD,推出∠GAE=∠GCB,根据全等三角形的性质得到AG=CG,于是得到结论.
【详解】
,
,
,,
,
,
,
,
四边形ABCD是平行四边形,
,
,,
,
;
如图,延长AE交BC于H,
四边形ABCD是平行四边形,
,
,
,
,
,
,
在与中,,
≌,
,
,
,
.
本题考查平行四边形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,正确的识别图形是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
分数/分
人数/人
70
7
80
90
1
100
8
广东省汕尾市甲子镇瀛江学校2023-2024学年九上数学期末预测试题含答案: 这是一份广东省汕尾市甲子镇瀛江学校2023-2024学年九上数学期末预测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,计算的值是等内容,欢迎下载使用。
广东汕尾甲子镇瀛江学校2023-2024学年数学九上期末教学质量检测模拟试题含答案: 这是一份广东汕尾甲子镇瀛江学校2023-2024学年数学九上期末教学质量检测模拟试题含答案,共7页。试卷主要包含了反比例函数y=图象经过A,下列方程式属于一元二次方程的是等内容,欢迎下载使用。
广东汕尾甲子镇瀛江学校2023-2024学年九上数学期末联考模拟试题含答案: 这是一份广东汕尾甲子镇瀛江学校2023-2024学年九上数学期末联考模拟试题含答案,共9页。试卷主要包含了如图,中,,,,则,抛物线与坐标轴的交点个数为,下列判断正确的是,下列语句中,正确的是,如图,在中,,,,则等内容,欢迎下载使用。