2024-2025学年福建省漳州市龙海市数学九年级第一学期开学教学质量检测试题【含答案】
展开
这是一份2024-2025学年福建省漳州市龙海市数学九年级第一学期开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在下列图形中,既是轴对称图形又是中心对称图形的是 ( )
A.B.C.D.
2、(4分)下列图书馆的标志中,是中心对称图形的是( )
A.B.
C.D.
3、(4分)在平面直角坐标系中,点P(﹣3,4)关于y轴对称点的坐标为( )
A.(﹣3,4)B.(3,4)C.(3,﹣4)D.(﹣3,﹣4)
4、(4分)下列运算中正确的是( )
A.+=B.
C.D.
5、(4分)若直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是( )
A.60B.30C.20D.32
6、(4分)如图,已知直角坐标系中的点A、B的坐标分别为A(2,4)、B(4,0),且P为AB的中点.若将线段AB向右平移3个单位后,与点P对应的点为Q,则点Q的坐标是( )
A.(3,2)B.(6,2)C.(6,4)D.(3,5)
7、(4分)下列说法正确的是( )
A.的相反数是B.2是4的平方根
C.是无理数D.计算:
8、(4分)已知反比例函数,在每个象限内y随着x的增大而增大,点P(a-1, 2)在这个反比例函数上,a的值可以是( )
A.0B.1C.2D.3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,圆柱体的高为8cm,底面周长为4cm,小蚂蚁在圆柱表面爬行,从A点到B点,路线如图所示,则最短路程为_____.
10、(4分)若m=2,则的值是_________________.
11、(4分)在▱ABCD中,∠BAD的平分线AE把边BC分成5和6两部分,则▱ABCD的周长为_____.
12、(4分)把直线沿轴向上平移5个单位,则得到的直线的表达式为_________.
13、(4分)如图,对面积为S的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至点A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2、B2、C2,得到△A2B2C2,记其面积为S2;··· ;则______.按此规律继续下去,可得到,则其面积_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)(发现)如图1,在中,分别交于,交于.已知,,,求的值.
思考发现,过点作,交延长线于点,构造,经过推理和计算能够使问题得到解决(如图2).
请回答:的值为______.
(2)(应用)如图3,在四边形中,,与不平行且,对角线,垂足为.若,,,求的长.
(3)(拓展)如图4,已知平行四边形和矩形,与交于点,,且,,判断与的数量关系并证明.
15、(8分)先化简再求值:,其中a=-2。
16、(8分)八年级(1)班张山同学利用所学函数知识,对函数进行了如下研究:
列表如下:
描点并连线(如下图)
(1)自变量x的取值范围是________;
(2)表格中:________,________;
(3)在给出的坐标系中画出函数的图象;
(4)一次函数的图象与函数的图象交点的坐标为_______.
17、(10分)已知长方形的长,宽.
(1)求长方形的周长;
(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.
18、(10分)已知,,求下列代数式的值.
(1)
(2)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知△ABC的各边长度分别为3cm、4cm、5cm,则连结各边中点的三角形的周长为_____.
20、(4分)当时,二次根式的值是______.
21、(4分)当x=______时,分式的值是1.
22、(4分)如图,在平面直角坐标系中,函数y=2x﹣3和y=kx+b的图象交于点P(m,1),则关于x的不等式2x﹣3>kx+b的解集是_____.
23、(4分)分解因式:
二、解答题(本大题共3个小题,共30分)
24、(8分)已知某服装厂现有种布料70米,种布料52米,现计划用这两种布料生产、两种型号的时装共80套.已知做一套型号的时装需用A种布料1.1米,种布料0.4米,可获利50元;做一套型号的时装需用种布料0.6米,种布料0.9米,可获利45元.设生产型号的时装套数为,用这批布料生产两种型号的时装所获得的总利润为元.
(1)求(元)与(套)的函数关系式.
(2)有几种生产方案?
(3)如何生产使该厂所获利润最大?最大利润是多?
25、(10分)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,
(1)证明:CF=EB.
(2)证明:AB=AF+2EB.
26、(12分)现有两家可以选择的快递公司的收费方式如下.
甲公司:物品重量不超过1千克的,需付费20元,超过1千克的部分按每千克4元计价.
乙公司:按物品重量每千克7元计价,外加一份包装费10元.设物品的重量为x千克,甲、乙公司快递该物品的费用分别为,.
(1)分别写出 和与x的函数表达式(并写出x的取值范围);
(2)图中给出了与x的函数图象,请在图中画出(1)中与x的函数图象(要求列表,描点).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
解:A、是轴对称图形但不是中心对称图形,故本选项错误;
B、既不是轴对称图形也不是中心对称图形,故本选项错误;
C、既是轴对称图形又是中心对称图形,故本选项正确;
D、中心对称图形是但不是轴对称图形,故本选项错误;
故选C
2、C
【解析】
根据中心对称图形的概念判断即可.
【详解】
解:A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、是中心对称图形,故此选项正确;
D、不是中心对称图形,故此选项错误.
故选:C.
此题主要考查了中心对称图形的概念.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
3、B
【解析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.
【详解】
解:点P(﹣3,4)关于y轴对称点的坐标为(3,4).
故选:B.
本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
4、D
【解析】
根据二次根式的加法、混合运算以及二次根式的化简等知识逐一进行分析即可得.
【详解】
A. +=2+3=5,故A选项错误;
B. =2,故B选项错误;
C. ,故C选项错误;
D. ,正确,
故选D.
本题考查了二次根式的混合运算以及二次根式的化简等知识,熟练掌握各运算的运算法则是解题的关键.
5、B
【解析】
解:根据直角三角形的勾股定理可得:
另一条直角边=,
则S=12×5÷2=30
故选:B.
6、B
【解析】
直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
【详解】
根据中点坐标的求法可知点坐标为,因为左右平移点的纵坐标不变,由题意向右平移3个单位,则各点的横坐标加3,所以点的坐标是.
故选:.
本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.
7、B
【解析】
根据只有符号不同的两个数互为相反数;开方运算,可得答案.
【详解】
A. 只有符号不同的两个数互为相反数,故A正确;
B. 2是4的平方根,故B正确;
C.=3是有理数,故C错误;
D. =3≠-3,故D错误;
故选B.
本题考查了相反数,平方根,立方根的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.
8、A
【解析】
根据函数的增减性判断出图象所在象限,进而得出图象上点的坐标特征,将四个选项的数值代入P(a-1,2)验证即可.
解:∵反比例函数,在每个象限内y随着x的增大而增大,
∴函数图象在二、四象限,
∴图象上的点的横、纵坐标异号.
A、a=0时,得P(-1,2),故本选项正确;
B、a=1时,得P(0,2),故本选项错误;
C、a=2时,得P(1,2),故本选项错误;
D、a=3时,得P(2,2),故本选项错误.
故选A.
此题考查了反比例函数图象上点的坐标特征,要熟悉反比例函数的性质,同时要注意数形结合.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、10cm
【解析】
将圆柱沿过点A和点B的母线剪开,展开成平面,由圆柱路线可知小蚂蚁在水平方向爬行的路程等于个底面周长,从而求出解题中的AC,连接AB,根据两点之间线段最短可得小蚂蚁爬行的最短路程为此时AB的长,然后根据勾股定理即可求出结论.
【详解】
解:将圆柱沿过点A和点B的母线剪开,展开成平面,由圆柱路线可知小蚂蚁在水平方向爬行的路程等于个底面周长,如下图所示:AC=1.5×4=6cm,连接AB,根据两点之间线段最短,
∴小蚂蚁爬行的最短路程为此时AB的长
∵圆柱体的高为8cm,
∴BC=8cm
在Rt△ABC中,AB=cm
故答案为:10cm.
此题考查的是利用勾股定理求最短路径问题,将圆柱的侧面展开,根据两点之间线段最短即可找出最短路径,然后利用勾股定理求值是解决此题的关键.
10、0
【解析】
先把所求的式子因式分解,再代入m的值进行求解.
【详解】
原式=(m-2)2=0
此题主要考查因式分解的应用,解题的关键是根据所求的式子特点进行因式分解,从而进行简便计算.
11、32或1
【解析】
根据平行四边形的性质可得∠DAE=∠AEB,再由角平分线的性质和等腰三角形的性质可得AB=BE,然后再分两种情况计算即可.
【详解】
解:在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠BEA,
∴AB=BE,BC=BE+EC,
①当BE=5,EC=6时,平行四边形ABCD的周长为:2(AB+BC)=2×(5+5+6)=32;
②当BE=6,EC=5时,平行四边形ABCD的周长为:2(AB+BC)=2×(6+6+5)=1.
故答案为32或1.
平行四边形的性质及等腰三角形的性质、角平分线的性质是本题的考点,根据其性质求得AB=BE是解题的关键.
12、
【解析】
根据上加下减,左加右减的法则可得出答案.
【详解】
解:沿y轴向上平移5个单位得到直线:,
即.
故答案是:.
本题考查一次函数的图象变换,注意上下移动改变的是y,左右移动改变的是x,规律是上加下减,左加右减.
13、19S
【解析】
首先根据题意,求得,同理求得,则可求得面积的值;根据题意发现规律:即可求得答案.
【详解】
连,
∵,
∴,
同理:,
∴,
同理:,
∴,
即,
同理:S,S,
∴.
故答案是:19S,.
本题主要考查了三角形面积及等积变换,利用三角形同高则面积比与底边关系分别分析得出规律:是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1) ;(2);(3).
【解析】
(1)由DE//BC,EF//DC,可证得四边形DCFE是平行四边形,求出DE=CF,DC=EF,由DC⊥BE,可得△BEF是直角三角形,利用勾股定理,求出BF的长即为BC+DE的值;
(2)同(1)做CE//DB,交AB延长线于点E,易证四边形DBEC是平行四边形,根据已知可证△DAB△CBA(SAS),得AC=DB,等量代换,可得AC=CE,故△ACE是等腰直角三角形,AE=8,利用勾股定理,即可求得AC;
(3)连接AE、CE,由四边形ABCD是平行四边形,四边形ABEF是矩形,易证得四边形DCEF是平行四边形,继而证得△ACE是等腰直角三角形,求出AC=CE,而DF=CE,即可得出答案.
【详解】
解:(1)∵DE//BC,EF//DC,
∴四边形DCFE是平行四边形,
∴DE=CF,DC=EF,
∴BC+ED=BC+CF=BF,
∵DC⊥BE,DC//EF,
∴∠BEF=90°,在Rt△BEF中,
∵BE=5,EF=DC=3,
∴BF==.
故BC+DE=.
(2)做CE//DB,交AB延长线于点E,
由(1)同理,可证得四边形DBEC是平行四边形,BE=DC=3,
在△DAB和△CBA中 ,
∴△DAB△CBA(SAS),
∴DB=AC,
∵四边形DBEC是平行四边形,DB=CE,
∴AC=CE,
∵AC⊥DB,
∴AC⊥CE,
∴△ACE是等腰直角三角形,
∵AE=AB+BE=AB+DC=5+3=8,
∴AC=,求得AC=.
故AC的长为.
(3)AC=DF;
证明:连接AE、CE,如图,
∵四边形ABCD是平行四边形,
∴AB//DC,
∵四边形ABEF是矩形,
∴AB//FE,BF=AE,
∴DC//FE,
∴四边形DCEF为平行四边形,
∴CE=DF,
∵四边形ABEF是矩形,
∴BF=AE,
∵BF=DF,
∴DF=CE,
∴AF=BE,
∵四边形ABCD是平行四边形,
∴AD=BC,
在△FAD和△EBC中 ,
∴△FAD△EBC(SSS),
∴∠AFD=∠BEC,
∴∠FEB=∠EFA=90°,
∵∠EBF=60°,∠BFD=30°,
∴∠DFA=90°-30°-(90°-60°)=30°,
∴∠CEB=30°,
∴OE=OB,
∵∠EBF=60°,
∴∠BEA=∠EBF=60°,
∴∠AEC=60°+30°=90°,
即△AEC是等腰直角三角形,
∴AC=CE,
∵DF=CE,
∴AC=DF.
故AC与DF之间的数量关系是AC=DF.
本题考查几何的综合,难度偏高,涉及的知识点有三角形、四边形、平行线等,熟练掌握以上知识点的综合运用是顺利解题的关键.
15、,3
【解析】
可先对括号内,进行化简约分,对括号外除法化乘法,然后对括号内同分母分式加法进行计算,最后进行约分即可得到化简之后的结果,将a=-2代入化简之后的结果进行计算.
【详解】
原式=
当a=-2,原式=3
本题考查分式的化简求值,对于分式的化简在运算过程中要根据运算法则注意运算顺序,在化简过程中可先分别对分母分子因式分解,再进行约分计算.
16、(1)全体实数;(2)1,1;(3)见解析;(4)和.
【解析】
(1)根据函数解析式,可得答案;
(2)根据自变量与函数值得对应关系,可得答案;
(3)根据描点法画函数图象,可得答案;
(4)根据图象,可得答案.
【详解】
解:(1)∵函数y=|x+2|-x-1
∴自变量x的取值范围为全体实数
故答案为:全体实数;
(2)当x=-2时,m=|-2+2|+2-1=1,
当x=0时,n=|0+2|-0-1=1,
∴
故答案为:1,1;
(3)如下图
(4)在(3)中坐标系中作出直线y=-x+3,如下:
由图象得:一次函数y=-x+3的图象与函数y=|x+2|-x-1的图象交点的坐标为:(-6,9)和(2,1)
故答案为:(-6,9)和(2,1).
本题考查了函数的图象与性质,利用描点法画函数图象,利用图象得出两个函数的交点是解题关键.
17、(1);(2)长方形的周长大.
【解析】
试题分析:(1)代入周长计算公式解决问题;
(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可.
试题解析:
(1)
∴长方形的周长为 .
(2)长方形的面积为:
正方形的面积也为4.边长为
周长为:
∴长方形的周长大于正方形的周长.
18、(1)9;(2)80
【解析】
(1)按照多项式乘以多项式的运算法则进行计算后代入即可求得答案;
(2)首先提取公因式xy,然后利用完全平方公式因式分解后代入即可求得答案.
【详解】
解:(1)原式=xy+2(x-y)-4=5+8-4=9;
(2)原式=xy(x2-2xy+y2)=xy(x-y)2=5×16=80;
本题考查了多项式乘以多项式及因式分解的知识,解题的关键是对算式进行变形,难度不大.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、6cm
【解析】
根据题意画出图形,然后可以发现新的三角形的三条边为原三角形的三条中位线,运用中位线即可快速作答.
【详解】
解::如图,D,E,F分别是△ABC的三边的中点,
则DE=AC,DF=BC,EF=AB.
∴△DEF的周长=DE+DF+EF=(AC+BC+AB)=6cm.
本题的关键在于画出图形,对于许多几何题,试题本身没有图,画出图形可以帮助思维,利用寻找解题思路.
20、
【解析】
把x=-2代入根式即可求解.
【详解】
把x=-2代入得
此题主要考查二次根式,解题的关键是熟知二次根式的性质.
21、1
【解析】
直接利用分式的值为零则分子为零进而得出答案.
【详解】
∵分式的值是1,
∴x=1.
故答案为:1.
此题主要考查了分式的值为零的条件,正确把握分式的性质是解题关键.
22、x>1.
【解析】
把点P(m,1)代入y=1x﹣3即可得1m-3=1,解得m=1,所以点P的坐标为(1,1),观察图象可得不等式1x﹣3>kx+b的解集是x>1.
23、
【解析】
试题分析:首先提取公因式b,然后根据完全平方公式进行因式分解.原式==
考点:(1)因式分解;(2)提取公因式法;(3)完全平方公式
二、解答题(本大题共3个小题,共30分)
24、(1)y=5x+3600;(2)共有5种生产方案;(3)当生产型号的时装44套、生产型号的时装36套时,该厂所获利润最大,最大利润为3820元.
【解析】
(1)根据题意,根据总利润=型号的总利润+型号的总利润,即可求出(元)与(套)的函数关系式;
(2)根据A、B两种布料的总长列出不等式,即可求出x的取值范围,从而求出各个方案;
(3)一次函数的增减性,求最值即可.
【详解】
解:(1)由题意可知:y=50x+45(80-x)=5x+3600
即(元)与(套)的函数关系式为y=5x+3600;
(2)由题意可知:
解得:
故可生产型号的时装40套、生产型号的时装80-40=40套或生产型号的时装41套、生产型号的时装80-41=39套或生产型号的时装42套、生产型号的时装80-42=38套或生产型号的时装43套、生产型号的时装80-43=37套或生产型号的时装44套、生产型号的时装80-44=36套,共5种生产方案
答:共有5种生产方案.
(3)∵一次函数y=5x+3600中,,5>0
∴y随x的增大而增大
∴当x=44时,y取最大值,ymax=44×5+3600=3820
即当生产型号的时装44套、生产型号的时装36套时,该厂所获利润最大,最大利润为3820元.
答: 当生产型号的时装44套、生产型号的时装36套时,该厂所获利润最大,最大利润为3820元.
此题考查的是一次函数的应用和一元一次不等式组的应用,掌握实际问题中的等量关系、不等关系和一次函数的增减性是解决此题的关键.
25、(1)证明见解析;(2)证明见解析.
【解析】
(1)根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离即CD=DE.再根据Rt△CDF≌Rt△EDB,得CF=EB;
(2)利用角平分线性质证明Rt△ADC≌Rt△ADE,AC=AE,再将线段AB进行转化.
【详解】
证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴DE=DC,
在Rt△CDF和Rt△EDB中,,
∴Rt△CDF≌Rt△EDB(HL).
∴CF=EB;
(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴DC=DE.
在Rt△ADC与Rt△ADE中,
∴Rt△ADC≌Rt△ADE(HL),
∴AC=AE,
∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.
本题主要考查角平分线的性质、全等三角形的判定和性质,角平分线上的点到角两边的距离相等,斜边和一直角边对应相等的两个直角三角形全等,掌握这两个知识点是解题的关键.
26、(1),;
(2)
图象见解析
【解析】
(1)根据题目中甲乙公司不同的收费方式结合数量关系,找出和与x之间的关系;
(2)根据的方程进行列表,依次描点连线即可得出函数图象.
【详解】
解:(1)设物品的重量为x千克
由题意可得;;
(2)列表为
函数图象如下:
故本题最后答案为:(1),;
(2)
图象如上所示.
(1)本题主要考查了一次函数的应用,解题的关键是根据不同的x的范围列出不同的解析式,其中不要忽略本题为实际问题,即x的取值范围为正;
(2)本题主要考查了函数图象的画法,明确画函数图象的步骤是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
x
…
0
1
2
3
…
y
…
7
5
3
m
1
n
1
1
1
…
x
…
_____
_____
…
y
…
_____
_____
…
x
…
__1___
__2___
_3___
…
y
…
___17__
__24___
_31___
…
x
…
__1___
__2___
_3___
…
y
…
___17__
__24___
_31___
…
x
…
__1___
__2___
_3___
…
y
…
___17__
__24___
_31___
…
相关试卷
这是一份2024-2025学年福建省漳州市云霄县九年级数学第一学期开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年福建省漳州市九上数学开学统考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年福建省龙岩市永定区金丰片数学九年级第一学期开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。