|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024-2025学年安徽省宿州市宿城一中学数学九上开学检测模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年安徽省宿州市宿城一中学数学九上开学检测模拟试题【含答案】01
    2024-2025学年安徽省宿州市宿城一中学数学九上开学检测模拟试题【含答案】02
    2024-2025学年安徽省宿州市宿城一中学数学九上开学检测模拟试题【含答案】03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年安徽省宿州市宿城一中学数学九上开学检测模拟试题【含答案】

    展开
    这是一份2024-2025学年安徽省宿州市宿城一中学数学九上开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)周长为的正方形对角线的长是( )
    A.B.C.D.
    2、(4分)如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的( )
    A.B.C.D.
    3、(4分)已知点(-4,y1),(2,y2)都在直线y=-3x+2上,则y1,y2 的大小关系是
    A.y1>y2B.y1=y2C.y14、(4分)如图,四边形中,,,于,于,若,的面积为,则四边形的边长的长为( )
    A.B.C.D.
    5、(4分)如图,CD是△ABC的边AB上的中线,且CD=AB,则下列结论错误的是( )
    A.∠B=30°B.AD=BD
    C.∠ACB=90°D.△ABC是直角三角形
    6、(4分)下列说法中错误的是 ( )
    A.一组对边平行且一组对角相等的四边形是平行四边形
    B.对角线互相垂直的平行四边形是正方形
    C.四个角相等的四边形是矩形
    D.每组邻边都相等的四边形是菱形
    7、(4分)某校随机抽查了八年级的30名女生,测试了1分钟仰卧起坐的次数,并绘制成如图的频数分布直方图(每组含前一个边界,不含后一个边界),则次数不低于42个的有( )
    A.6人B.8个C.14个D.23个
    8、(4分)矩形ABCD的对角线AC、BD交于点O,下列结论不成立的是( )
    A.AC=BDB.OA=OBC.OC=CDD.∠BCD=90°
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)给出下列3个分式:,它们的最简公分母为__________.
    10、(4分)若代数式有意义,则实数的取值范围是_________.
    11、(4分)如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= ______
    12、(4分)把点向上平移个单位长度,再向右平移个单位长度后得到点,则点的坐标是_____.
    13、(4分)D、E、F分别是△ABC各边的中点.若△ABC的周长是12cm,则△DEF的周长是____cm.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)(知识链接)连结三角形两边中点的线段,叫做三角形的中位线.
    (动手操作)小明同学在探究证明中位线性质定理时,是沿着中位线将三角形剪开然后将它们无缝隙、无重叠的拼在一起构成平行四边形,从而得出:三角形中位线平行于第三边且等于第三边的一半.
    (性质证明)小明为证明定理,他想利用三角形全等、平行四边形的性质来证明.请你帮他完成解题过程(要求:画出图形,根据图形写出已知、求证和证明过程).
    15、(8分)如图,已知、分别是平行四边形的边、上的点,且.
    求证:四边形是平行四边形.
    16、(8分)如图,过点A(2,0)的两条直线,分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.
    (1)求点B的坐标;
    (2)若△ABC的面积为4,求的解析式.
    17、(10分)计算:.
    18、(10分)解不等式组:,把它的解集在数轴上表示出来,并写出其整数解.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)函数y=中,自变量x的取值范围是___________.
    20、(4分)如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC,BD相交于点O,点E在AB上,且BE=BO,则∠EOA=___________°.
    21、(4分)一次函数y=-2x+4的图象与x轴交点坐标是______,与y轴交点坐标是_________
    22、(4分)如图,直线与直线交于点,则不等式的解集是__________.
    23、(4分)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M是BC边上一个动点,联结AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转恰好至△NGF.给出以下三个结论:①∠AND=∠MPC; ②△ABM≌△NGF;③S四边形AMFN=a1+b1.其中正确的结论是_____(请填写序号).
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)
    (1)若顾客选择方式一,则享受9折优惠的概率为多少;
    (2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.
    25、(10分)某学校计划组织全校1500名师生外出参加集体活动.经过研究,决定租用当地租车公司一共60辆、两种型号客车作为交通工具.
    下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:
    注:载客量指的是每辆客车最多可载该校师生的人数.
    学校租用型号客车辆,租车总费用为元.
    (1)求与的函数解析式,请直接写出的取值范围;
    (2)若要使租车总费用不超过22000元,一共有几种租车方案?并结合函数性质说明哪种租车方案最省钱?
    26、(12分)在平面直角坐标系中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”.例如,点P(1,4)的“3级关联点”为Q(3×1+4,1+3×4),即Q(7,13).
    (1)已知点A(-2,6)的“级关联点”是点A1,点B的“2级关联点”是B1(3,3),求点A1和点B的坐标;
    (2)已知点M(m-1,2m)的“-3级关联点”M′位于y轴上,求M′的坐标;
    (3)已知点C(-1,3),D(4,3),点N(x,y)和它的“n级关联点”N′都位于线段CD上,请直接写出n的取值范围.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    先根据正方形的性质得到正方形的边长为1cm,然后根据勾股定理得到正方形对角线的长.
    【详解】
    解:∵正方形的周长为4cm,
    ∴正方形的边长为1cm,
    ∴正方形的对角线的长为=cm.
    故选:D.
    本题考查了正方形的性质和勾股定理,根据正方形的四条边相等得出直角三角形的两直角边长是解决此题的关键.
    2、B
    【解析】
    根据矩形的性质,得△EBO≌△FDO,再由△AOB与△ABC同底且△AOB的高是△ABC高的得出结论.
    【详解】
    解:∵四边形为矩形,
    ∴OB=OD=OA=OC,
    在△EBO与△FDO中,
    ∵∠EOB=∠DOF,
    OB=OD,
    ∠EBO=∠FDO,
    ∴△EBO≌△FDO(ASA),
    ∴阴影部分的面积=S△AEO+S△EBO=S△AOB,
    ∵△AOB与△ABC同底且△AOB的高是△ABC高的,
    ∴S△AOB=S△ABC=S矩形ABCD.
    故选B.
    本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质
    3、A
    【解析】
    先求出y1,y1的值,再比较其大小即可.
    【详解】
    解:∵点(-4,y1),(1,y1)都在直线y=−3x+1上,
    ∴y1=11+1=14,y1=−6+1=−4,
    ∴y1>y1.
    故选:A.
    本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
    4、A
    【解析】
    先证明△ACD≌△BEA,在根据△ABC的面积为8,求出BE,然后根据勾股定理即可求出AB.
    【详解】
    解:∵BE⊥AC,CD⊥AC,
    ∴∠ACD=∠BEA=90°,
    ∴∠CDB+∠DCA=90°,
    又∵∠DAB=∠DAC+∠BAC=90°
    在△ACD和△AEB中,
    ∴△ACD≌△BEA(AAS)
    ∴AC=BE
    ∵△ABC的面积为8,
    ∴,
    解得BE=4,
    在Rt△ABE中,
    .
    故选择:A.
    本题主要考查了三角形全等和勾股定理的知识点,熟练三角形全等的判定和勾股定理是解答此题的关键.
    5、A
    【解析】
    根据CD是△ABC的边AB上的中线,且CDAB,即可得到等腰三角形,进而得出正确结论.
    【详解】
    ∵CD是△ABC的边AB上的中线,∴AD=BD,故B选项正确;
    又∵CDAB,∴AD=CD=BD,∴∠A=∠ACD,∠B=∠BCD,∴∠ACB=180°90°,故C选项正确;
    ∵∠ACB=90°,∴△ABC是直角三角形,故D选项正确.
    故选A.
    本题考查了直角三角形的判定,等腰三角形性质的应用.解题的关键是熟练运用鞥要三角形的性质.
    6、A
    【解析】
    根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.
    【详解】
    A、一组对边平行的四边形是平行四边形,说法错误,有可能是梯形,应该是一组对边平行且相等的四边形是平行四边形;
    B、对角线互相垂直且相等的平行四边形是正方形,此说法正确;
    C、根据四边形的内角和为360°,可得四个内角都相等的四边形是矩形,故正确;
    D、四条边都相等的四边形是菱形,说法正确.
    故选A.
    本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的性质,此题难度不大.
    7、C
    【解析】
    分析:由频数分布直方图可知仰卧起坐的次数x在42≤x<46的有8人,46≤x<50的有6人,可得答案.
    详解:由频数分布直方图可知,次数不低于42个的有8+6=14(人),
    故选:C.
    点睛:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    8、C
    【解析】
    根据矩形的性质可以直接判断.
    【详解】
    ∵四边形ABCD是矩形
    ∴AC=BD,OA=OB=OC=OD,∠BCD=90°
    ∴选项A,B,D成立,
    故选C.
    本题考查了矩形的性质,熟练运用矩形的性质是本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、a2bc.
    【解析】
    解:观察得知,这三个分母都是单项式,确定这几个分式的最简公分母时,相同字母取次数最高的,不同字母连同它的指数都取着,系数取最小公倍数,所以它们的最简公分母是a2bc.
    故答案为:a2bc.
    考点:分式的通分.
    10、
    【解析】
    根据被开方数大于等于0列不等式求解即可.
    【详解】
    由题意得x-1≥0,
    解得x≥1.
    故答案为x≥1.
    本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.
    11、
    【解析】
    如图,连接BB′,
    ∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,
    ∴AB=AB′,∠BAB′=60°,
    ∴△ABB′是等边三角形,
    ∴AB=BB′,
    在△ABC′和△B′BC′中,

    ∴△ABC′≌△B′BC′(SSS),
    ∴∠ABC′=∠B′BC′,
    延长BC′交AB′于D,
    则BD⊥AB′,
    ∵∠C=90∘,AC=BC=,
    ∴AB==2,
    ∴BD=2×=,
    C′D=×2=1,
    ∴BC′=BD−C′D=−1.
    故答案为:−1.
    点睛: 本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.
    12、
    【解析】
    根据向上平移纵坐标加,向右平移横坐标加解答即可.
    【详解】
    解:点(-2,1)向上平移2个单位长度,纵坐标变为1+2=3,
    向右平移3个单位长度横坐标变为-2+3=1,
    所以,点B的坐标为(1,3).
    故答案为:(1,3).
    本题本题考查了坐标系中点的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
    13、1
    【解析】
    如图所示,
    ∵D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE=AC,
    同理有EF=AB,DF=BC,
    ∴△DEF的周长=(AC+BC+AB)=×12=1cm,
    故答案为:1.
    三、解答题(本大题共5个小题,共48分)
    14、见解析
    【解析】
    作出图形,然后写出已知、求证,延长DE到F,使DE=EF,证明△ADE和△CEF全等,根据全等三角形对应边相等可得AD=CF,全等三角形对应角相等可得∠F=∠ADE,再求出BD=CF,根据内错角相等,两直线平行判断出AB∥CF,然后判断出四边形BCFD是平行四边形,根据平行四边形的性质证明结论.
    【详解】
    解:已知:如图所示,在△ABC中,D、E分别是AB、AC的中点,
    求证:DE=BC,DE∥BC,
    证明:延长DE到F,使DE=EF,连接CF,
    ∵点E是AC的中点,
    ∴AE=CE,
    在△ADE和△CEF中,

    ∴△ADE≌△CEF(SAS),
    ∴AD=CF,∠ADE=∠F,
    ∴AB∥CF,
    ∵点D是AB的中点,
    ∴AD=BD,
    ∴BD=CF,
    ∴BD∥CF,
    ∴四边形BCFD是平行四边形,
    ∴DF∥BC,DF=BC,
    ∴DE∥BC且DE=BC.
    本题考查的是三角形中位线定理的证明、平行四边形的判定和性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
    15、见解析.
    【解析】
    根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出即可.
    【详解】
    解:证明:∵四边形是平行四边形,
    ∴,且,
    ∴,
    ∵,
    ∴,
    ∴四边形是平行四边形
    此题考查平行四边形的判定与性质,解题关键在于掌握判定法则
    16、(1)(0,3);(2).
    【解析】
    (1)在Rt△AOB中,由勾股定理得到OB=3,即可得出点B的坐标;
    (2)由=BC•OA,得到BC=4,进而得到C(0,-1).设的解析式为, 把A(2,0),C(0,-1)代入即可得到的解析式.
    【详解】
    (1)在Rt△AOB中,
    ∵,
    ∴,
    ∴OB=3,
    ∴点B的坐标是(0,3) .
    (2)∵=BC•OA,
    ∴BC×2=4,
    ∴BC=4,
    ∴C(0,-1).
    设的解析式为,
    把A(2,0),C(0,-1)代入得:,
    ∴,
    ∴的解析式为是.
    考点:一次函数的性质.
    17、3.
    【解析】
    根据二次根式的性质化简计算可得.
    【详解】
    解:原式.
    本题主要考查二次根式的加减,解题的关键是掌握二次根式的性质.
    18、,x的整数解为﹣1,﹣1,0,1,1.
    【解析】
    先对不等式组中的两个不等式进行分别求解,求得解集,再将解集表示在数轴上.
    【详解】
    解:
    解不等式①,,
    解不等式②,,
    ∴,
    解集在数轴上表示如下:
    ∴x的整数解为﹣1,﹣1,0,1,1.
    本题考查不等式组和数轴,解题的关键是熟练掌握不等式组的求解和有理数在数轴上的表示.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、且x≠−1.
    【解析】
    根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,列不等式求解.
    【详解】
    根据题意,可得
    且x+1≠0;
    解得且x≠−1.
    故答案为且x≠−1.
    考查函数自变量的取值范围,熟练掌握分式有意义的条件,二次根式有意义的条件是解题的关键.
    20、1
    【解析】
    根据∠BAD和菱形邻角和为180°的性质可以求∠ABC的值,根据菱形对角线即角平分线的性质可以求得∠ABO的值,又由BE=BO可得∠BEO=∠BOE,根据∠BOE和菱形对角线互相垂直的性质可以求得∠EOA的大小.
    【详解】
    解:∵∠BAD=80°,菱形邻角和为180°
    ∴∠ABC=100°,
    ∵菱形对角线即角平分线
    ∴∠ABO=50°,
    ∵BE=BO
    ∴∠BEO=∠BOE==65°,
    ∵菱形对角线互相垂直
    ∴∠AOB=90°,
    ∴∠AOE=90°-65°=1°,
    故答案为 1.
    本题考查了菱形对角线互相垂直平分且平分一组对角的性质,考查了等腰三角形底角相等的性质,本题中正确的计算∠BEO=∠BOE=65°是解题的关键.
    21、 (2,0) (0,4)
    【解析】把y=0代入y=2x+4得:0=2x+4,x=−2,
    令x=0,代入y=2x+4解得y=4,
    ∴一次函数y=2x+4的图象与y轴交点坐标这(0,4),
    即一次函数y=2x+4与x轴的交点坐标是(−2,0),与y轴交点坐标这(0,4).
    22、
    【解析】
    不等式的解集为直线在直线上方部分所对的x的范围.
    【详解】
    解:由图象可得,当时,直线在直线上方,所以不等式的解集是.
    故答案为:
    本题考查了一次函数与不等式的关系,合理利用图象信息是解题的关键.
    23、①②③.
    【解析】
    ①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∴∠NAD=∠BAM,∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,可知∠DAM=∠AND,②根据旋转的性质得到GN=ME,等量代换得到AB=ME=NG,根据全等三角形的判定定理得到△ABM≌△NGF;③由旋转的性质得到AM=AN,NF=MF,根据全等三角形的性质得到AM=NF,推出四边形AMFN是矩形,根据余角的想知道的∠NAM=90°,推出四边形AMFN是正方形,于是得到S四边形AMFN=AM1=a1+b1;
    【详解】
    ①∵四边形ABCD是正方形,
    ∴∠BAD=∠ADC=∠B=90°,
    ∴∠BAM+∠DAM=90°,
    ∵将△ABM绕点A旋转至△ADN,
    ∴∠NAD=∠BAM,∠AND=∠AMB,
    ∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,
    ∴∠DAM=∠AND,故①正确,
    ②∵将△MEF绕点F旋转至△NGF,
    ∴GN=ME,
    ∵AB=a,ME=a,
    ∴AB=ME=NG,
    在△ABM与△NGF中,AB=NG=a,∠B=∠NGF=90°,GF=BM=b,
    ∴△ABM≌△NGF;故②正确;
    ③∵将△ABM绕点A旋转至△ADN,
    ∴AM=AN,
    ∵将△MEF绕点F旋转至△NGF,
    ∴NF=MF,
    ∵△ABM≌△NGF,
    ∴AM=NF,
    ∴四边形AMFN是矩形,
    ∵∠BAM=∠NAD,
    ∴∠BAM+DAM=∠NAD+∠DAN=90°,
    ∴∠NAM=90°,
    ∴四边形AMFN是正方形,
    ∵在Rt△ABM中,a1+b1=AM1,
    ∴S四边形AMFN=AM1=a1+b1;故③正确
    故答案为①②③.
    本题考查了全等三角形的判定和性质,正方形的性质,旋转的性质,正确的理解题意是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)享受9折优惠的概率为;(2)顾客享受8折优惠的概率为.
    【解析】
    (1)由转动转盘甲共有四种等可能结果,其中指针指向A区域只有1种情况,利用概率公式计算可得;
    (2)画树状图得出所有等可能结果,从中确定指针指向每个区域的字母相同的结果数,利用概率公式计算可得.
    【详解】
    (1)若选择方式一,转动转盘甲一次共有四种等可能结果,其中指针指向A区域只有1种情况,
    ∴享受9折优惠的概率为;
    (2)画树状图如下:
    由树状图可知共有12种等可能结果,其中指针指向每个区域的字母相同的有2种结果,
    所以指针指向每个区域的字母相同的概率,即顾客享受8折优惠的概率为=.
    本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.
    25、 (1)与的函数解析式为;(2)一共有11种租车方案,当租用型车辆30辆,型车辆30辆时,租车费用最省钱.
    【解析】
    (1)根据题意可以得到y与x的函数关系式,然后根据总人数可以求出x的取值范围,本题得以解决;
    (2)根据题意可以得到关于x的不等式,然后根据一次函数的性质即可解答本题.
    【详解】
    (1)由题意可得,


    解得,,
    即与的函数解析式为;
    (2)由题意可得,

    解得,,

    为整数,
    、31、32、33、、40,
    共有11种租车方案,

    随的增大而增大,
    当时,取得最小值,此时,,
    答:一共有11种租车方案,当租用型车辆30辆,型车辆30辆时,租车费用最省钱.
    本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
    26、(1)(1,1)(2)(0,﹣16)(3)
    【解析】
    (1)根据关联点的定义,结合点的坐标即可得出结论;(2)根据关联点的定义和点M(m﹣1,2m)的“﹣3级关联点”M′位于y轴上,即可求出M′的坐标;(3)因为点C(﹣1,3),D(4,3),得到y=3,由点N(x,y)和它的“n级关联点”N′都位于线段CD上,可得到方程组,解答即可.
    【详解】
    (1)∵点A(﹣2,6)的“级关联点”是点A1,
    ∴A1(﹣2×+6,﹣2+×6),
    即A1(5,1).
    设点B(x,y),
    ∵点B的“2级关联点”是B1(3,3),

    解得
    ∴B(1,1).
    (2)∵点M(m﹣1,2m)的“﹣3级关联点”为M′(﹣3(m﹣1)+2m,m﹣1+(﹣3)×2m),
    M′位于y轴上,
    ∴﹣3(m﹣1)+2m=0,
    解得:m=3
    ∴m﹣1+(﹣3)×2m=﹣16,
    ∴M′(0,﹣16).
    (3)∵点N(x,y)和它的“n级关联点”N′都位于线段CD上,
    ∴N′(nx+y,x+ny),
    ∴ , ,
    ∴x=3-3n,
    ∴,解得.
    本题考查了一次函数图象上的坐标的特征,“关联点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
    题号





    总分
    得分
    批阅人
    型号
    载客量
    租金单价
    30人辆
    400元辆
    20人辆
    300元辆
    相关试卷

    2024-2025学年安徽省宿州第九中学数学九上开学质量检测模拟试题【含答案】: 这是一份2024-2025学年安徽省宿州第九中学数学九上开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年安徽省宿州市埇桥区宿城一中中考数学模拟试卷(含详细答案解析): 这是一份2024年安徽省宿州市埇桥区宿城一中中考数学模拟试卷(含详细答案解析),共22页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2024年安徽省宿州市埇桥区宿城一中中考数学模拟试卷(含解析): 这是一份2024年安徽省宿州市埇桥区宿城一中中考数学模拟试卷(含解析),共22页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map