年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    三年(2022-2024)高考数学真题分类汇编(全国通用)专题07 三角函数(七大考点)(解析版)

    三年(2022-2024)高考数学真题分类汇编(全国通用)专题07 三角函数(七大考点)(解析版)第1页
    三年(2022-2024)高考数学真题分类汇编(全国通用)专题07 三角函数(七大考点)(解析版)第2页
    三年(2022-2024)高考数学真题分类汇编(全国通用)专题07 三角函数(七大考点)(解析版)第3页
    还剩15页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    三年(2022-2024)高考数学真题分类汇编(全国通用)专题07 三角函数(七大考点)(解析版)

    展开

    这是一份三年(2022-2024)高考数学真题分类汇编(全国通用)专题07 三角函数(七大考点)(解析版),共18页。试卷主要包含了已知,关于该函数有下列四个说法,设函数,函数在上的最大值是 等内容,欢迎下载使用。

    考点1:三角函数的图像与性质:奇偶性、单调性、奇偶性
    1.(多选题)(2022年新高考全国II卷数学真题)已知函数的图像关于点中心对称,则( )
    A.在区间单调递减
    B.在区间有两个极值点
    C.直线是曲线的对称轴
    D.直线是曲线的切线
    【答案】AD
    【解析】由题意得:,所以,,
    即,
    又,所以时,,故.
    对A,当时,,由正弦函数图象知在上是单调递减;
    对B,当时,,由正弦函数图象知只有1个极值点,由,解得,即为函数的唯一极值点;
    对C,当时,,,直线不是对称轴;
    对D,由得:,
    解得或,
    从而得:或,
    所以函数在点处的切线斜率为,
    切线方程为:即.
    故选:AD.
    2.(多选题)(2024年新课标全国Ⅱ卷数学真题)对于函数和,下列说法中正确的有( )
    A.与有相同的零点B.与有相同的最大值
    C.与有相同的最小正周期D.与的图象有相同的对称轴
    【答案】BC
    【解析】A选项,令,解得,即为零点,
    令,解得,即为零点,
    显然零点不同,A选项错误;
    B选项,显然,B选项正确;
    C选项,根据周期公式,的周期均为,C选项正确;
    D选项,根据正弦函数的性质的对称轴满足,
    的对称轴满足,
    显然图像的对称轴不同,D选项错误.
    故选:BC
    3.(2022年新高考天津数学高考真题)已知,关于该函数有下列四个说法:
    ①的最小正周期为;
    ②在上单调递增;
    ③当时,的取值范围为;
    ④的图象可由的图象向左平移个单位长度得到.
    以上四个说法中,正确的个数为( )
    A.B.C.D.
    【答案】A
    【解析】因为,所以的最小正周期为,①不正确;
    令,而在上递增,所以在上单调递增,②正确;因为,,所以,③不正确;
    由于,所以的图象可由的图象向右平移个单位长度得到,④不正确.
    故选:A.
    4.(2022年新高考北京数学高考真题)已知函数,则( )
    A.在上单调递减B.在上单调递增
    C.在上单调递减D.在上单调递增
    【答案】C
    【解析】因为.
    对于A选项,当时,,则在上单调递增,A错;
    对于B选项,当时,,则在上不单调,B错;
    对于C选项,当时,,则在上单调递减,C对;
    对于D选项,当时,,则在上不单调,D错.
    故选:C.
    5.(2022年新高考全国I卷数学真题)记函数的最小正周期为T.若,且的图象关于点中心对称,则( )
    A.1B.C.D.3
    【答案】A
    【解析】由函数的最小正周期T满足,得,解得,
    又因为函数图象关于点对称,所以,且,
    所以,所以,,
    所以.
    故选:A
    6.(2023年高考全国乙卷数学(理)真题)已知函数在区间单调递增,直线和为函数的图像的两条相邻对称轴,则( )
    A.B.C.D.
    【答案】D
    【解析】因为在区间单调递增,
    所以,且,则,,
    当时,取得最小值,则,,
    则,,不妨取,则,
    则,
    故选:D.
    7.(2024年上海夏季高考数学真题)下列函数的最小正周期是的是( )
    A.B.
    C.D.
    【答案】A
    【解析】对A,,周期,故A正确;
    对B,,周期,故B错误;
    对于选项C,,是常值函数,不存在最小正周期,故C错误;
    对于选项D,,周期,故D错误,
    故选:A.
    8.(2023年北京高考数学真题)设函数.
    (1)若,求的值.
    (2)已知在区间上单调递增,,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数存在,求的值.
    条件①:;
    条件②:;
    条件③:在区间上单调递减.
    注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.
    【解析】(1)因为
    所以,
    因为,所以.
    (2)因为,
    所以,所以的最大值为,最小值为.
    若选条件①:因为的最大值为,最小值为,所以无解,故条件①不能使函数存在;
    若选条件②:因为在上单调递增,且,
    所以,所以,,
    所以,
    又因为,所以,
    所以,
    所以,因为,所以.
    所以,;
    若选条件③:因为在上单调递增,在上单调递减,
    所以在处取得最小值,即.
    以下与条件②相同.
    考点2:值域与最值问题
    9.(2024年北京高考数学真题)在平面直角坐标系中,角与角均以为始边,它们的终边关于原点对称.若,则的最大值为 .
    【答案】/
    【解析】由题意,从而,
    因为,所以的取值范围是,的取值范围是,
    当且仅当,即时,取得最大值,且最大值为.
    故答案为:.
    10.(2024年高考全国甲卷数学(文)真题)函数在上的最大值是 .
    【答案】2
    【解析】,当时,,
    当时,即时,.
    故答案为:2
    11.(2024年天津高考数学真题)已知函数的最小正周期为.则在的最小值是( )
    A.B.C.0D.
    【答案】A
    【解析】,由得,
    即,当时,,
    画出图象,如下图,
    由图可知,在上递减,
    所以,当时,
    故选:A
    考点3:伸缩变换问题
    12.(2023年高考全国甲卷数学(理)真题)函数的图象由函数的图象向左平移个单位长度得到,则的图象与直线的交点个数为( )
    A.1B.2C.3D.4
    【答案】C
    【解析】因为向左平移个单位所得函数为,所以,
    而显然过与两点,
    作出与的部分大致图像如下,
    考虑,即处与的大小关系,
    当时,,;
    当时,,;
    当时,,;
    所以由图可知,与的交点个数为.
    故选:C.
    13.(2022年新高考浙江数学高考真题)为了得到函数的图象,只要把函数图象上所有的点( )
    A.向左平移个单位长度B.向右平移个单位长度
    C.向左平移个单位长度D.向右平移个单位长度
    【答案】D
    【解析】因为,所以把函数图象上的所有点向右平移个单位长度即可得到函数的图象.
    故选:D.
    14.(2024年新课标全国Ⅰ卷数学真题)当时,曲线与的交点个数为( )
    A.3B.4C.6D.8
    【答案】C
    【解析】因为函数的的最小正周期为,
    函数的最小正周期为,
    所以在上函数有三个周期的图象,
    在坐标系中结合五点法画出两函数图象,如图所示:
    由图可知,两函数图象有6个交点.
    故选:C
    考点4:求解析式问题
    15.(2023年新课标全国Ⅱ卷数学真题)已知函数,如图A,B是直线与曲线的两个交点,若,则 .

    【答案】
    【解析】设,由可得,
    由可知,或,,由图可知,
    ,即,.
    因为,所以,即,.
    所以,
    所以或,
    又因为,所以,.
    故答案为:.
    16.(2023年天津高考数学真题)已知函数的图象关于直线对称,且的一个周期为4,则的解析式可以是( )
    A.B.
    C.D.
    【答案】B
    【解析】由函数的解析式考查函数的最小周期性:
    A选项中,B选项中,
    C选项中,D选项中,
    排除选项CD,
    对于A选项,当时,函数值,故是函数的一个对称中心,排除选项A,
    对于B选项,当时,函数值,故是函数的一条对称轴,
    故选:B.
    考点5:三角恒等变换
    17.(2024年新课标全国Ⅱ卷数学真题)已知为第一象限角,为第三象限角,,,则 .
    【答案】
    【解析】法一:由题意得,
    因为,,
    则,,
    又因为,
    则,,则,
    则,联立 ,解得.
    法二: 因为为第一象限角,为第三象限角,则,
    ,,


    故答案为:.
    18.(2022年新高考浙江数学高考真题)若,则 , .
    【答案】
    【解析】[方法一]:利用辅助角公式处理
    ∵,∴,即,
    即,令,,
    则,∴,即,
    ∴ ,
    则.
    故答案为:;.
    [方法二]:直接用同角三角函数关系式解方程
    ∵,∴,即,
    又,将代入得,解得,
    则.
    故答案为:;.
    19.(2023年新课标全国Ⅰ卷数学真题)已知,则( ).
    A.B.C.D.
    【答案】B
    【解析】因为,而,因此,
    则,
    所以.
    故选:B
    20.(2023年新课标全国Ⅱ卷数学真题)已知为锐角,,则( ).
    A.B.C.D.
    【答案】D
    【解析】因为,而为锐角,
    解得:.
    故选:D.
    21.(2024年高考全国甲卷数学(理)真题)已知,则( )
    A.B.C.D.
    【答案】B
    【解析】因为,
    所以,,
    所以,
    故选:B.
    22.(2022年新高考全国II卷数学真题)若,则( )
    A.B.
    C.D.
    【答案】C
    【解析】[方法一]:直接法
    由已知得:,
    即:,
    即:
    所以
    故选:C
    [方法二]:特殊值排除法
    解法一:设β=0则sinα +csα =0,取,排除A, B;
    再取α=0则sinβ +csβ= 2sinβ,取β,排除D;选C.
    [方法三]:三角恒等变换

    所以

    故选:C.
    23.(2024年新课标全国Ⅰ卷数学真题)已知,则( )
    A.B.C.D.
    【答案】A
    【解析】因为,所以,
    而,所以,
    故即,
    从而,故,
    故选:A.
    24.(2022年新高考北京数学高考真题)若函数的一个零点为,则 ; .
    【答案】 1
    【解析】∵,∴

    故答案为:1,
    25.(2023年北京高考数学真题)已知命题若为第一象限角,且,则.能说明p为假命题的一组的值为 , .
    【答案】
    【解析】因为在上单调递增,若,则,
    取,
    则,即,
    令,则,
    因为,则,
    即,则.
    不妨取,即满足题意.
    故答案为:.
    26.(2023年高考全国乙卷数学(文)真题)若,则 .
    【答案】
    【解析】因为,则,
    又因为,则,
    且,解得或(舍去),
    所以.
    故答案为:.
    考点6:与的取值与范围问题
    27.(2023年新课标全国Ⅰ卷数学真题)已知函数在区间有且仅有3个零点,则的取值范围是 .
    【答案】
    【解析】因为,所以,
    令,则有3个根,
    令,则有3个根,其中,
    结合余弦函数的图像性质可得,故,
    故答案为:.
    28.(2022年高考全国乙卷数学(理)真题)记函数的最小正周期为T,若,为的零点,则的最小值为 .
    【答案】
    【解析】 因为,(,)
    所以最小正周期,因为,
    又,所以,即,
    又为的零点,所以,解得,
    因为,所以当时;
    故答案为:
    29.(2024年北京高考数学真题)设函数.已知,,且的最小值为,则( )
    A.1B.2C.3D.4
    【答案】B
    【解析】由题意可知:为的最小值点,为的最大值点,
    则,即,
    且,所以.
    故选:B.
    30.(2022年高考全国甲卷数学(文)真题)将函数的图像向左平移个单位长度后得到曲线C,若C关于y轴对称,则的最小值是( )
    A.B.C.D.
    【答案】C
    【解析】由题意知:曲线为,又关于轴对称,则,
    解得,又,故当时,的最小值为.
    故选:C.
    31.(2022年高考全国甲卷数学(理)真题)设函数在区间恰有三个极值点、两个零点,则的取值范围是( )
    A.B.C.D.
    【答案】C
    【解析】依题意可得,因为,所以,
    要使函数在区间恰有三个极值点、两个零点,又,的图象如下所示:
    则,解得,即.
    故选:C.
    考点7:弧长、面积公式
    32.(2022年高考全国甲卷数学(理)真题)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,是以O为圆心,OA为半径的圆弧,C是AB的中点,D在上,.“会圆术”给出的弧长的近似值s的计算公式:.当时,( )
    A.B.C.D.
    【答案】B
    【解析】如图,连接,
    因为是的中点,
    所以,
    又,所以三点共线,
    即,
    又,
    所以,
    则,故,
    所以.
    故选:B.
    考点
    三年考情(2022-2024)
    命题趋势
    考点1:三角函数的图像与性质:奇偶性、单调性、奇偶性
    2022年新高考全国II卷数学真题
    2024年新课标全国Ⅱ卷数学真题
    2022年新高考天津数学高考真题
    2022年新高考北京数学高考真题
    2022年新高考全国I卷数学真题
    2023年高考全国乙卷数学(理)真题
    2024年上海夏季高考数学真题
    2023年北京高考数学真题
    本节命题趋势仍是突出以三角函数的图像、周期性、单调性、奇偶性、对称性、最值等重点内容展开,并结合三角公式、化简求值、平面向量、解三角形等内容综合考查,因此复习时要注重三角知识的工具性,以及三角知识的应用意识.
    考点2:值域与最值问题
    2024年北京高考数学真题
    2024年高考全国甲卷数学(文)真题
    2024年天津高考数学真题
    考点3:伸缩变换问题
    2023年高考全国甲卷数学(理)真题
    2022年新高考浙江数学高考真题
    2024年新课标全国Ⅰ卷数学真题
    考点4:求解析式问题
    2023年新课标全国Ⅱ卷数学真题
    2023年天津高考数学真题
    考点5:三角恒等变换
    2024年新课标全国Ⅱ卷数学真题
    2022年新高考浙江数学高考真题
    2023年新课标全国Ⅰ卷数学真题
    2023年新课标全国Ⅱ卷数学真题
    2024年高考全国甲卷数学(理)真题
    2022年新高考全国II卷数学真题
    2024年新课标全国Ⅰ卷数学真题
    2022年新高考北京数学高考真题
    2023年北京高考数学真题
    2023年高考全国乙卷数学(文)真题
    考点6:与的取值与范围问题
    2023年新课标全国Ⅰ卷数学真题
    2022年高考全国乙卷数学(理)真题
    2024年北京高考数学真题
    2022年高考全国甲卷数学(文)真题
    2022年高考全国甲卷数学(理)真题
    考点7:弧长、面积公式
    2022年高考全国甲卷数学(理)真题

    相关试卷

    三年(2022-2024)高考数学真题分类汇编(全国通用)专题04 立体几何(文)(八大考点)(解析版):

    这是一份三年(2022-2024)高考数学真题分类汇编(全国通用)专题04 立体几何(文)(八大考点)(解析版),共26页。

    专题13 计数原理(理) (三大考点)-【好题汇编】三年(2022-2024)高考数学真题分类汇编(全国通用):

    这是一份专题13 计数原理(理) (三大考点)-【好题汇编】三年(2022-2024)高考数学真题分类汇编(全国通用),文件包含专题13计数原理理三大考点原卷版docx、专题13计数原理理三大考点解析版docx等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。

    专题10 数列(九大考点)-【好题汇编】三年(2022-2024)高考数学真题分类汇编(全国通用):

    这是一份专题10 数列(九大考点)-【好题汇编】三年(2022-2024)高考数学真题分类汇编(全国通用),文件包含专题10数列九大考点原卷版docx、专题10数列九大考点解析版docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map