新高考数学一轮复习考点过关练习 与圆有关的最值问题(含解析)
展开求解与圆相关的最值问题,基本思路是利用数形结合思想转化.
(1)已知圆的半径为r,则①圆O上一点到圆外一点P的距离d的最大值和最小值分别为dmax=|OP|+r,dmin=|OP|-r;②圆上的点到与该圆相离的某条直线的距离d的最大值和最小值分别为dmax=m+r,dmin=m-r,其中m为圆心到直线的距离.
(2)与圆上点(x,y)有关代数式的最值的常见类型:
①形如u=eq \f(y-b,x-a)型的最值问题,可转化为过点(a,b)和点(x,y)的直线的斜率的最值问题;
②形如t=ax+by型的最值问题,可转化为动直线的截距的最值问题;
③形如(x-a)2+(y-b)2型的最值问题,可转化为动点(x,y)到定点(a,b)的距离的平方的最值问题;
④形如|ax+by+c|型的最值问题,可转化为动点(x,y)到直线ax+by+c=0距离的eq \r(a2+b2)倍的最值问题.
求解形如|PM|+|PN|(其中M,N均为动点)且与圆C有关的折线段最值问题的基本思路:①“动化定”,把与圆上动点的距离转化为与圆心的距离;②“曲化直”,即将折线段之和转化为同一直线上的两线段之和,一般要通过对称性解决.
【题型归纳】
题型一: 定点到圆上点的最值(范围)
1.已知 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,(i为虚数单位),则 SKIPIF 1 < 0 的最大值为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
2.如图,P为圆O:x2+y2=4外一动点,过点P作圆O的切线PA,PB,切点分别为A,B,∠APB=120°,直线OP与AB相交于点Q,点M(3, SKIPIF 1 < 0 ),则|MQ|的最小值为( )
A. SKIPIF 1 < 0 B.2C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
3.已知A,B为圆 SKIPIF 1 < 0 上的两动点, SKIPIF 1 < 0 ,点P是圆 SKIPIF 1 < 0 上的一点,则 SKIPIF 1 < 0 的最小值是( )
A.2B.4C.6D.8
题型二: 圆上点到定直线(图形)上的最值(范围)
4.过圆C: SKIPIF 1 < 0 外一点P作圆C的两条切线PA、PB,切点分别为A、B,若PA⊥PB,则点P到直线 SKIPIF 1 < 0 的距离的最小值为( )
A.1B. SKIPIF 1 < 0 C.2 SKIPIF 1 < 0 D.3 SKIPIF 1 < 0
5.已知点A(2,0),B(0,﹣1),点 SKIPIF 1 < 0 是圆x2+(y﹣1)2=1上任意一点,则 SKIPIF 1 < 0 面积最大值为( )
A.2B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
6.若 SKIPIF 1 < 0 , SKIPIF 1 < 0 分别为圆 SKIPIF 1 < 0 : SKIPIF 1 < 0 与圆 SKIPIF 1 < 0 : SKIPIF 1 < 0 上的动点, SKIPIF 1 < 0 为直线 SKIPIF 1 < 0 上的动点,则 SKIPIF 1 < 0 的最小值为( )
A. SKIPIF 1 < 0 B.6C.9D.12
题型三: 过圆内定点的弦长最值(范围)
7.在圆 SKIPIF 1 < 0 中,过点 SKIPIF 1 < 0 的最长弦和最短弦分别为 SKIPIF 1 < 0 和 SKIPIF 1 < 0 ,则四边形 SKIPIF 1 < 0 的面积为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
8.已知直线 l 过点 SKIPIF 1 < 0 ,则直线 l 被圆O: SKIPIF 1 < 0 截得的弦长的最小值为( )
A.3B.6C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
9.直线 SKIPIF 1 < 0 被圆 SKIPIF 1 < 0 截得的最长弦的长为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
题型四: 直线与圆的位置关系求距离的最值
10.当圆 SKIPIF 1 < 0 的圆心到直线 SKIPIF 1 < 0 的距离最大时, SKIPIF 1 < 0 ( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
11.已知P是直线l:x+y-7=0上任意一点,过点P作两条直线与圆C: SKIPIF 1 < 0 相切,切点分别为A,B.则|AB|的最小值为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
12.已知 SKIPIF 1 < 0 是圆 SKIPIF 1 < 0 上一个动点,且直线 SKIPIF 1 < 0 与直线 SKIPIF 1 < 0 相交于点 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的取值范围是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
题型五: 切线长的最值
13.已知圆 SKIPIF 1 < 0 ,P为抛物线 SKIPIF 1 < 0 上的动点,过点P作圆的切线,则切线长的最小值为( )
A.1B. SKIPIF 1 < 0 C.2D.3
14.已知圆 SKIPIF 1 < 0 : SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 是直线 SKIPIF 1 < 0 上的动点,过 SKIPIF 1 < 0 作圆的两条切线,切点分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的最小值为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
15.已知圆 SKIPIF 1 < 0 ,点M为直线 SKIPIF 1 < 0 上一个动点,过点M作圆C的两条切线,切点分别为A,B,则四边形 SKIPIF 1 < 0 周长的最小值为( )
A.8B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【双基达标】
16.已知圆 SKIPIF 1 < 0 经过原点,则圆上的点到直线 SKIPIF 1 < 0 距离的最大值为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
17.圆C为过点 SKIPIF 1 < 0 的圆中最小的圆,则圆C上的任意一点M到原点O距离的取值范围为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
18.已知 SKIPIF 1 < 0 为圆 SKIPIF 1 < 0 上一动点,则点 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离的最大值是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
19.已知圆 SKIPIF 1 < 0 ,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )
A.1B.2
C.3D.4
20.已知点P与点 SKIPIF 1 < 0 的距离不大于1,则点P到直线 SKIPIF 1 < 0 的距离最小值为( )
A.4B.5C.6D.7
21.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为 SKIPIF 1 < 0 ,若将军从点 SKIPIF 1 < 0 处出发,河岸线所在直线方程为 SKIPIF 1 < 0 ,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
22.过点 SKIPIF 1 < 0 作圆 SKIPIF 1 < 0 的最短弦,延长该弦与 SKIPIF 1 < 0 轴、 SKIPIF 1 < 0 轴分别交于 SKIPIF 1 < 0 两点,则 SKIPIF 1 < 0 的面积为( )
A.2B.3C.4D.5
23.过坐标原点 SKIPIF 1 < 0 作直线 SKIPIF 1 < 0 的垂线,垂足为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的取值范围是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
24.已知 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 面积的最大值为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
25.已知圆 SKIPIF 1 < 0 ,则当圆 SKIPIF 1 < 0 的面积最小时,圆上的点到坐标原点的距离的最大值为( )
A. SKIPIF 1 < 0 B.6
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
26.在直角坐标系 SKIPIF 1 < 0 中,已知直线 SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 变化时,动直线始终没有经过点 SKIPIF 1 < 0 .定点 SKIPIF 1 < 0 的坐标 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的取值范围为( ).
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
27.如果复数z满足 SKIPIF 1 < 0 ,那么 SKIPIF 1 < 0 的最大值是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
28.已知 SKIPIF 1 < 0 为圆 SKIPIF 1 < 0 : SKIPIF 1 < 0 上长度为4的动弦,点 SKIPIF 1 < 0 是直线 SKIPIF 1 < 0 : SKIPIF 1 < 0 上的动点,则 SKIPIF 1 < 0 的最小值为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
29.圆 SKIPIF 1 < 0 上一点到原点的距离的最大值为( )
A.4B.5C.6D.7
30.若实数 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的最大值是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【高分突破】
单选题
31.已知点 SKIPIF 1 < 0 为曲线 SKIPIF 1 < 0 上的动点, SKIPIF 1 < 0 为圆 SKIPIF 1 < 0 上的动点,则 SKIPIF 1 < 0 的最小值是
A.3B.5C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
32.若圆 SKIPIF 1 < 0 与圆 SKIPIF 1 < 0 外离,过直线 SKIPIF 1 < 0 上任意一点P分别作圆 SKIPIF 1 < 0 的切线,切点分别为M,N,且均保持 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C.1D.2
33.已知圆 SKIPIF 1 < 0 ,直线 SKIPIF 1 < 0 为 SKIPIF 1 < 0 上的动点,过点 SKIPIF 1 < 0 作圆 SKIPIF 1 < 0 的切线 SKIPIF 1 < 0 ,切点为 SKIPIF 1 < 0 ,当四边形 SKIPIF 1 < 0 面积最小时,直线 SKIPIF 1 < 0 的方程为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
34.已知圆 SKIPIF 1 < 0 内一点P(2,1),则过P点的最短弦所在的直线方程是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
35.直线 SKIPIF 1 < 0 分别与 SKIPIF 1 < 0 轴, SKIPIF 1 < 0 轴交于 SKIPIF 1 < 0 两点,点 SKIPIF 1 < 0 在圆 SKIPIF 1 < 0 上,则 SKIPIF 1 < 0 面积的取值范围是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
36.从直线 SKIPIF 1 < 0 上的动点 SKIPIF 1 < 0 作圆 SKIPIF 1 < 0 的两条切线,切点分别为 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 最大时,四边形 SKIPIF 1 < 0 ( SKIPIF 1 < 0 为坐标原点)面积是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
37.已知三条直线 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,其中 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 为实数, SKIPIF 1 < 0 , SKIPIF 1 < 0 不同时为零, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 不同时为零,且 SKIPIF 1 < 0 .设直线 SKIPIF 1 < 0 , SKIPIF 1 < 0 交于点 SKIPIF 1 < 0 ,则点 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离的最大值是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
38.阿波罗尼斯是古希腊著名数学家,他对圆锥曲线有深刻系统的研究,主要研究成果集中在他的代表作《圆锥曲线论》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M与两定点A,B的距离之比为λ(λ>0,λ≠1),那么点M的轨迹就是阿波罗尼斯圆.下面我们来研究与此相关的一个问题,已知圆O:x2+y2=1上的动点M和定点A SKIPIF 1 < 0 ,B(1,1),则2|MA|+|MB|的最小值为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
39.已知 SKIPIF 1 < 0 是圆 SKIPIF 1 < 0 的一条弦,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 是 SKIPIF 1 < 0 的中点,当弦 SKIPIF 1 < 0 在圆 SKIPIF 1 < 0 上运动时,直线 SKIPIF 1 < 0 上存在两点 SKIPIF 1 < 0 ,使得 SKIPIF 1 < 0 恒成立,则线段 SKIPIF 1 < 0 长度的最小值是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
40.已知直线 SKIPIF 1 < 0 是圆 SKIPIF 1 < 0 的对称轴,过点 SKIPIF 1 < 0 作圆C的一条切线,切点为B,则 SKIPIF 1 < 0 等于( )
A.4B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D.3
二、多选题
41.已知圆 SKIPIF 1 < 0 ,点P为x轴上一个动点,过点P作圆M的两条切线,切点分别为A,B,直线AB与MP交于点C,则下列结论正确的是( )
A.四边形PAMB周长的最小值为 SKIPIF 1 < 0 B. SKIPIF 1 < 0 的最大值为2
C.直线AB过定点D.存在点N使 SKIPIF 1 < 0 为定值
42.若 SKIPIF 1 < 0 是圆 SKIPIF 1 < 0 : SKIPIF 1 < 0 上任一点,则点 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 距离的值可以为( )
A.4B.6C. SKIPIF 1 < 0 D.8
43.点P是直线x+y﹣3=0上的动点,由点P向圆O:x2+y2=4作切线,则切线长可能为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C.1D. SKIPIF 1 < 0
44.已知点 SKIPIF 1 < 0 ,直线 SKIPIF 1 < 0 : SKIPIF 1 < 0 ,圆 SKIPIF 1 < 0 : SKIPIF 1 < 0 ,过点 SKIPIF 1 < 0 分别作圆 SKIPIF 1 < 0 的两条切线 SKIPIF 1 < 0 , SKIPIF 1 < 0 ( SKIPIF 1 < 0 , SKIPIF 1 < 0 为切点), SKIPIF 1 < 0 在 SKIPIF 1 < 0 的外接圆上.则( )
A.直线 SKIPIF 1 < 0 的方程是 SKIPIF 1 < 0 B. SKIPIF 1 < 0 被圆 SKIPIF 1 < 0 截得的最短弦的长为 SKIPIF 1 < 0
C.四边形 SKIPIF 1 < 0 的面积为 SKIPIF 1 < 0 D. SKIPIF 1 < 0 的取值范围为 SKIPIF 1 < 0
三、填空题
45.已知直线 SKIPIF 1 < 0 是圆 SKIPIF 1 < 0 的对称轴.过点 SKIPIF 1 < 0 作圆C的一条切线,切点为B,有下列结论:
① SKIPIF 1 < 0 ;
② SKIPIF 1 < 0 ;
③切线AB的斜率为 SKIPIF 1 < 0 ;
④对任意的实数m,直线 SKIPIF 1 < 0 与圆C的位置关系都是相交.
其中所有正确结论的序号为__________.
46.已知椭圆 SKIPIF 1 < 0 的左、右焦点分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 为椭圆上一个动点, SKIPIF 1 < 0 为圆 SKIPIF 1 < 0 上一个动点,则 SKIPIF 1 < 0 的最大值为__________
47.已知 SKIPIF 1 < 0 分别为双曲线 SKIPIF 1 < 0 的左、右焦点,过 SKIPIF 1 < 0 且倾斜角为 SKIPIF 1 < 0 的直线与双曲线的右支交于 SKIPIF 1 < 0 两点,记 SKIPIF 1 < 0 的内切圆 SKIPIF 1 < 0 的半径为 SKIPIF 1 < 0 , SKIPIF 1 < 0 的内切圆 SKIPIF 1 < 0 的半径为 SKIPIF 1 < 0 ,圆 SKIPIF 1 < 0 的面积为 SKIPIF 1 < 0 ,圆 SKIPIF 1 < 0 的面积为 SKIPIF 1 < 0 ,则______________.
① SKIPIF 1 < 0 的取值范围是 SKIPIF 1 < 0 ②直线 SKIPIF 1 < 0 与 SKIPIF 1 < 0 轴垂直
③若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ④ SKIPIF 1 < 0 的取值范围是 SKIPIF 1 < 0
48.过圆x2+y2=25上一点P作圆x2+y2=m2(0<m<5)的两条切线,切点分别为A、B,若∠AOB=120°,则实数m的值为____________.
49.已知 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 是平面向量, SKIPIF 1 < 0 是单位向量. 若 SKIPIF 1 < 0 , SKIPIF 1 < 0 , 则 SKIPIF 1 < 0 的最大值为_______.
50.若M,N分别为圆C1: SKIPIF 1 < 0 ,与圆C2: SKIPIF 1 < 0 上的动点,P为直线 SKIPIF 1 < 0 上的动点,则 SKIPIF 1 < 0 的最小值为_________.
四、解答题
51.在直角坐标系xOy中,曲线C的参数方程为 SKIPIF 1 < 0 ,其中 SKIPIF 1 < 0 为参数.以原点为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为 SKIPIF 1 < 0 .
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)设曲线C上的点P到直线l的距离为d,求d的取值范围.
52.(1)已知点P(x,y)在圆C:x2+y2-6x-6y+14=0上,求x2+y2+2x+3的最大值与最小值.
(2)已知实数x,y满足(x-2)2+y2=3,求 SKIPIF 1 < 0 的最大值与最小值.
53.已知圆 SKIPIF 1 < 0 过点 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,且圆心 SKIPIF 1 < 0 在直线 SKIPIF 1 < 0 上.
(1)求圆 SKIPIF 1 < 0 的方程;
(2)若点 SKIPIF 1 < 0 在圆 SKIPIF 1 < 0 上,点 SKIPIF 1 < 0 , SKIPIF 1 < 0 为 SKIPIF 1 < 0 的中点, SKIPIF 1 < 0 为坐标原点,求 SKIPIF 1 < 0 的最大值.
54.已知抛物线 SKIPIF 1 < 0 的焦点为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 与圆 SKIPIF 1 < 0 上点的距离的最小值为 SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 ;
(2)若点 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上, SKIPIF 1 < 0 是 SKIPIF 1 < 0 的两条切线, SKIPIF 1 < 0 是切点,求 SKIPIF 1 < 0 面积的最大值.
55.已知圆 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 分别在 SKIPIF 1 < 0 轴和圆 SKIPIF 1 < 0 上.
(1)判断两圆的位置关系;
(2)求 SKIPIF 1 < 0 的最小值.
参考答案
1.A
【解析】
【分析】
依据复数模的几何意义,利用点与圆上点的距离的最大值去求 SKIPIF 1 < 0 的最大值即可.
【详解】
SKIPIF 1 < 0 表示以 SKIPIF 1 < 0 为圆心, SKIPIF 1 < 0 为半径的圆,
则圆心C到点 SKIPIF 1 < 0 的距离 SKIPIF 1 < 0 = SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 的最大值为 SKIPIF 1 < 0 .
故选:A
2.A
【解析】
【分析】
利用平面几何知识得 SKIPIF 1 < 0 点轨迹是圆,然后求出 SKIPIF 1 < 0 与圆心距离减去半径得最小值.
【详解】
解:过点P作圆O的切线PA,PB,切点分别为A,B,∠APB=120°,
由圆与切线的平面几何性质知,∠APO=60°,又|OA|=2,则可得|OP|= SKIPIF 1 < 0
在直角 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ,由 SKIPIF 1 < 0 得 SKIPIF 1 < 0 ,
∴Q点的轨迹是以O为圆心, SKIPIF 1 < 0 为半径的圆,方程为x2+y2=3;
|MQ|的最小值即为|OM|﹣r= SKIPIF 1 < 0 ﹣ SKIPIF 1 < 0 = SKIPIF 1 < 0 .
故选:A.
3.C
【解析】
【分析】
根据向量的运算律将题意转化为圆上的点到 SKIPIF 1 < 0 的中点 SKIPIF 1 < 0 的距离最值问题即可得解.
【详解】
设M是AB的中点,因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
即M在以O为圆心,1为半径的圆上,
SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .
又 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
故选:C.
4.B
【解析】
【分析】
求出点P的轨迹为圆,再由圆心到直线的距离减去半径即可得出最小值.
【详解】
∵过圆C: SKIPIF 1 < 0 外一点 SKIPIF 1 < 0 向圆C引两条切线 SKIPIF 1 < 0 ,
切点分别为A,B,由PA⊥PB可知,四边形CAPB为边长为1的正方形,所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 点的轨迹E是以C(1,0)为圆心, SKIPIF 1 < 0 为半径的圆,
圆心 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离 SKIPIF 1 < 0 ,
所以点P到直线 SKIPIF 1 < 0 的最短距离为 SKIPIF 1 < 0 ,
故选:B
5.D
【解析】
【分析】
结合点到直线距离公式及图形求出圆上点 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 距离的最大值,由此可求 SKIPIF 1 < 0 面积的最大值.
【详解】
由已知 SKIPIF 1 < 0 ,
要使 SKIPIF 1 < 0 的面积最大,只要点P到直线 SKIPIF 1 < 0 的距离最大.
由于AB的方程为 SKIPIF 1 < 0 1,即x﹣2y﹣2=0,
圆心(0,1)到直线AB的距离为d SKIPIF 1 < 0 ,
故P到直线AB的距离最大值为 SKIPIF 1 < 0 1,
所以 SKIPIF 1 < 0 面积的最大值为 SKIPIF 1 < 0 ,
故选:D.
6.C
【解析】
【分析】
设圆 SKIPIF 1 < 0 圆心 SKIPIF 1 < 0 半径为1, SKIPIF 1 < 0 与 SKIPIF 1 < 0 关于直线 SKIPIF 1 < 0 对称,求出 SKIPIF 1 < 0 , SKIPIF 1 < 0 最小时,由 SKIPIF 1 < 0 即可求解.
【详解】
易得圆 SKIPIF 1 < 0 圆心为 SKIPIF 1 < 0 半径为2,圆 SKIPIF 1 < 0 圆心为 SKIPIF 1 < 0 半径为1,设圆 SKIPIF 1 < 0 圆心 SKIPIF 1 < 0 半径为1, SKIPIF 1 < 0 与 SKIPIF 1 < 0 关于直线 SKIPIF 1 < 0 对称,
则 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,如图所示,要使 SKIPIF 1 < 0 最小,
则 SKIPIF 1 < 0 .
故选:C.
7.B
【解析】
【分析】
将圆的方程配成标准式,即可得到圆心坐标与半径,从而求出最短、最长弦,即可得解;
【详解】
解:圆 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,圆心为 SKIPIF 1 < 0 ,半径 SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 ,所以过点 SKIPIF 1 < 0 的最长弦 SKIPIF 1 < 0 ,最短弦 SKIPIF 1 < 0 ,
且最短弦与最长弦互相垂直,所以 SKIPIF 1 < 0 ;
故选:B
8.B
【解析】
【分析】
由题可知当OA与直线 l 垂直时,所截得的弦长最短,利用弦长公式即得.
【详解】
依题意可知 SKIPIF 1 < 0 在圆内,且 SKIPIF 1 < 0 ,圆O的半径为 SKIPIF 1 < 0 .
当OA与直线 l 垂直时,所截得的弦长最短,
即弦长的最小值为 SKIPIF 1 < 0 .
故选:B.
9.C
【解析】
【分析】
首先确定直线过定点,然后判断定点在圆内,根据圆中的弦直径最长可以直接得出结果.
【详解】
直线 SKIPIF 1 < 0 过定点 SKIPIF 1 < 0 .
圆C的圆心为 SKIPIF 1 < 0 ,半径 SKIPIF 1 < 0 .
定点在圆内,截得的最长弦为直径,
故选:C.
10.C
【解析】
【分析】
求出圆心坐标和直线过定点,当圆心和定点的连线与直线 SKIPIF 1 < 0 垂直时满足题意,再利用两直线垂直,斜率乘积为-1求解即可.
【详解】
解:因为圆 SKIPIF 1 < 0 的圆心为 SKIPIF 1 < 0 ,半径 SKIPIF 1 < 0 ,
又因为直线 SKIPIF 1 < 0 过定点A(-1,1),
故当 SKIPIF 1 < 0 与直线 SKIPIF 1 < 0 垂直时,圆心到直线的距离最大,
此时有 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 .
故选:C.
11.A
【解析】
【分析】
根据直线与圆相切的几何性质可知,当 SKIPIF 1 < 0 取得最小值时, SKIPIF 1 < 0 最大, SKIPIF 1 < 0 的值最小,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 取得最小值,进而可求此时 SKIPIF 1 < 0
【详解】
圆 SKIPIF 1 < 0 是以 SKIPIF 1 < 0 为圆心,2为半径的圆,由题可知,当 SKIPIF 1 < 0 最小时, SKIPIF 1 < 0 的值最小. SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 取得最小值时, SKIPIF 1 < 0 最大, SKIPIF 1 < 0 最小,点 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离 SKIPIF 1 < 0 ,故当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 最大,且最大值为 SKIPIF 1 < 0 ,此时 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 .
故选:A
12.B
【解析】
【分析】
先求出直线 SKIPIF 1 < 0 和 SKIPIF 1 < 0 的定点,即可推出点 SKIPIF 1 < 0 的轨迹方程,将原问题转化为两圆之间的位置关系,即可求解.
【详解】
解:直线 SKIPIF 1 < 0 整理可得, SKIPIF 1 < 0 ,即直线 SKIPIF 1 < 0 恒过 SKIPIF 1 < 0 ,
同理可得,直线 SKIPIF 1 < 0 恒过 SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 直线 SKIPIF 1 < 0 和 SKIPIF 1 < 0 互相垂直,
SKIPIF 1 < 0 两条直线的交点 SKIPIF 1 < 0 在以 SKIPIF 1 < 0 , SKIPIF 1 < 0 为直径的圆上,即 SKIPIF 1 < 0 的轨迹方程为 SKIPIF 1 < 0 ,设该圆心为 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 圆心距 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 两圆相离,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 的取值范围是 SKIPIF 1 < 0 .
故选:B.
13.C
【解析】
【分析】
首先得到圆的圆心坐标与半径,设 SKIPIF 1 < 0 ,利用距离公式求出 SKIPIF 1 < 0 ,根据二次函数的性质求出 SKIPIF 1 < 0 的最小值,即可求出切线长最小值;
【详解】
解:圆 SKIPIF 1 < 0 的圆心为 SKIPIF 1 < 0 ,半径 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 为抛物线 SKIPIF 1 < 0 上的动点,设 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ,
所以当 SKIPIF 1 < 0 时 SKIPIF 1 < 0 ,过点 SKIPIF 1 < 0 作圆的切线,此时切线长最小,最小为 SKIPIF 1 < 0 ;
故选:C
14.B
【解析】
【分析】
利用面积相等求出 SKIPIF 1 < 0 .设 SKIPIF 1 < 0 ,得到 SKIPIF 1 < 0 .利用几何法分析出 SKIPIF 1 < 0 ,即可求出 SKIPIF 1 < 0 的最小值.
【详解】
圆 SKIPIF 1 < 0 : SKIPIF 1 < 0 化为标准方程: SKIPIF 1 < 0 ,其圆心 SKIPIF 1 < 0 ,半径 SKIPIF 1 < 0 .
过点P引圆C的两条切线,切点分别为点A、B,如图:
在△PAC中,有 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,变形可得: SKIPIF 1 < 0 .
设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 .
所以当 SKIPIF 1 < 0 的值即x最小时, SKIPIF 1 < 0 的值最大,此时 SKIPIF 1 < 0 最小.
而 SKIPIF 1 < 0 的最小值为点C到直线 SKIPIF 1 < 0 的距离,即 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
故选:B
15.A
【解析】
【分析】
根据圆的切线性质,结合点到直线的距离公式进行求解即可.
【详解】
圆 SKIPIF 1 < 0 的圆心坐标为 SKIPIF 1 < 0 ,半径为 SKIPIF 1 < 0 ,
因为过点M作圆C的两条切线,切点分别为A,B,
所以有 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
因此有 SKIPIF 1 < 0 ,
要想四边形 SKIPIF 1 < 0 周长最小,只需 SKIPIF 1 < 0 最小,即当 SKIPIF 1 < 0 时,
此时 SKIPIF 1 < 0 ,此时 SKIPIF 1 < 0 ,
即最小值为 SKIPIF 1 < 0 ,
故选:A
【点睛】
关键点睛:利用圆切线性质是解题的关键.
16.B
【解析】
【分析】
由题意画图,数形结合可知 SKIPIF 1 < 0 ,当圆心 SKIPIF 1 < 0 在C处时,点 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离最大,进而可求结果.
【详解】
如图: SKIPIF 1 < 0 圆心为 SKIPIF 1 < 0 ,经过原点,可得 SKIPIF 1 < 0
则圆心 SKIPIF 1 < 0 在单位圆 SKIPIF 1 < 0 上,原点 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离为 SKIPIF 1 < 0
延长BO交 SKIPIF 1 < 0 于点C,以C为圆心,OC为半径作圆C,BC延长线交圆C于点D,
当圆心 SKIPIF 1 < 0 在C处时,点 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离最大为 SKIPIF 1 < 0
此时,圆 SKIPIF 1 < 0 上点D到直线 SKIPIF 1 < 0 的距离最大为 SKIPIF 1 < 0
故选:B
【点睛】
关键的点睛:由题意画图,数形结合可得,点D到直线 SKIPIF 1 < 0 的距离最大是解题的关键.本题考查了作图能力,数形结合思想,运算求解能力,属于一般题目.
17.D
【解析】
【分析】
要使圆最小则圆心为P、Q的中点,求出圆心坐标及其半径,由圆心到原点的距离结合圆的性质即可确定圆C上的任意一点M到原点O距离的范围.
【详解】
以PQ为直径的圆最小,则圆心为 SKIPIF 1 < 0 ,半径为 SKIPIF 1 < 0 ,圆心到原点的距离为5,
∴M到原点O距离的最小值为 SKIPIF 1 < 0 .
故选:D.
18.C
【解析】
【分析】
求出圆心与半径,利用点到直线的距离公式求出圆心到直线的距离 SKIPIF 1 < 0 ,由 SKIPIF 1 < 0 即可求解.
【详解】
∵圆 SKIPIF 1 < 0 ,∴圆心 SKIPIF 1 < 0 ,半径 SKIPIF 1 < 0 ,
∴圆心到直线的距离 SKIPIF 1 < 0 ,
∴圆 SKIPIF 1 < 0 上的点到直线 SKIPIF 1 < 0 的距离最大值为 SKIPIF 1 < 0 ,
故选:C.
【点睛】
关键点点睛:本题考查圆上的点到直线距离的最值问题,利用圆的几何性质是解题的关键.
19.B
【解析】
【分析】
当直线和圆心与点 SKIPIF 1 < 0 的连线垂直时,所求的弦长最短,即可得出结论.
【详解】
圆 SKIPIF 1 < 0 化为 SKIPIF 1 < 0 ,所以圆心 SKIPIF 1 < 0 坐标为 SKIPIF 1 < 0 ,半径为 SKIPIF 1 < 0 ,
设 SKIPIF 1 < 0 ,当过点 SKIPIF 1 < 0 的直线和直线 SKIPIF 1 < 0 垂直时,圆心到过点 SKIPIF 1 < 0 的直线的距离最大,所求的弦长最短,此时 SKIPIF 1 < 0
根据弦长公式得最小值为 SKIPIF 1 < 0 .
故选:B.
【点睛】
本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.
20.B
【解析】
【分析】
依题意知点P的轨迹为以 SKIPIF 1 < 0 为圆心半径为1的圆面,则点P到直线 SKIPIF 1 < 0 的距离最小值为圆心 SKIPIF 1 < 0 到直线的距离减去半径.
【详解】
设点 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
圆心 SKIPIF 1 < 0 到 SKIPIF 1 < 0 的距离为 SKIPIF 1 < 0
则点P到直线 SKIPIF 1 < 0 的距离最小值为 SKIPIF 1 < 0
故选:B
21.B
【解析】
【分析】
求出 SKIPIF 1 < 0 关于直线 SKIPIF 1 < 0 的对称点 SKIPIF 1 < 0 坐标,由 SKIPIF 1 < 0 到圆心距离减去圆半径可得.
【详解】
设点A关于直线 SKIPIF 1 < 0 的对称点 SKIPIF 1 < 0 , SKIPIF 1 < 0 的中点为 SKIPIF 1 < 0
故 SKIPIF 1 < 0 解得 SKIPIF 1 < 0 ,要使从点A到军营总路程最短,即为点 SKIPIF 1 < 0 到军营最短距离,“将军饮马”的最短总路程为 SKIPIF 1 < 0 .
故选:B.
22.B
【解析】
【分析】
先利用圆的性质确定最短弦所在直线的方程,再求得 SKIPIF 1 < 0 两点坐标,计算面积即得结果.
【详解】
依题意,点 SKIPIF 1 < 0 ,由圆的性质可知,过点 SKIPIF 1 < 0 且垂直PM的直线l截得的弦长最短.
而 SKIPIF 1 < 0 ,所以直线l的斜率为1,即方程为: SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 .
所以直线l与 SKIPIF 1 < 0 轴、 SKIPIF 1 < 0 轴分别交于 SKIPIF 1 < 0 ,
故 SKIPIF 1 < 0 底边 SKIPIF 1 < 0 ,高 SKIPIF 1 < 0 ,即面积为 SKIPIF 1 < 0 .
故选:B.
23.D
【解析】
【分析】
求出直线直线 SKIPIF 1 < 0 过的定点A,由题意可知垂足是落在以OA为直径的圆上,由此可利用 SKIPIF 1 < 0 的几何意义求得答案,
【详解】
直线 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
令 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
即直线 SKIPIF 1 < 0 过定点 SKIPIF 1 < 0 ,
由过坐标原点 SKIPIF 1 < 0 作直线 SKIPIF 1 < 0 的垂线,垂足为 SKIPIF 1 < 0 ,
可知: SKIPIF 1 < 0 落在以OA为直径的圆上,
而以OA为直径的圆为 SKIPIF 1 < 0 ,如图示:
故 SKIPIF 1 < 0 可看作是圆上的点 SKIPIF 1 < 0 到原点距离的平方,
而圆过原点,圆上点到原点的最远距离为 SKIPIF 1 < 0 ,
但将原点坐标代入直线 SKIPIF 1 < 0 中, SKIPIF 1 < 0 不成立,
即直线l不过原点,所以 SKIPIF 1 < 0 不可能和原点重合,
故 SKIPIF 1 < 0 ,
故选:D
24.B
【解析】
【分析】
设点 SKIPIF 1 < 0 ,即可求出 SKIPIF 1 < 0 的轨迹方程,求出直线 SKIPIF 1 < 0 ,以及 SKIPIF 1 < 0 ,利用圆心到直线的距离加上半径求出高的最大值,即可求出面积的最大值;
【详解】
解:设点 SKIPIF 1 < 0 ,因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 点的轨迹是以 SKIPIF 1 < 0 为圆心, SKIPIF 1 < 0 为半径的圆,
又直线 SKIPIF 1 < 0 的方程为 SKIPIF 1 < 0 : SKIPIF 1 < 0 , SKIPIF 1 < 0 ,圆心 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离最大值为 SKIPIF 1 < 0
则 SKIPIF 1 < 0 面积的最大值为 SKIPIF 1 < 0 .
故选: SKIPIF 1 < 0 .
25.D
【解析】
【分析】
配方,由半径的最小值得参数 SKIPIF 1 < 0 值,然后求出圆心到原点距离,再加半径可得.
【详解】
根据题意,圆 SKIPIF 1 < 0 ,
变形可得 SKIPIF 1 < 0 .
其圆心为 SKIPIF 1 < 0 ,半径为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
当圆 SKIPIF 1 < 0 的面积最小时,必有 SKIPIF 1 < 0 ,此时 SKIPIF 1 < 0 .
圆 SKIPIF 1 < 0 的方程为 SKIPIF 1 < 0 ,
圆心 SKIPIF 1 < 0 到原点为距离 SKIPIF 1 < 0 ,
则圆上的点到坐标原点的距离的最大值为 SKIPIF 1 < 0 .
故选:D.
26.D
【解析】
【分析】
根据原点到直线 SKIPIF 1 < 0 的距离为1,结合题意可得点 SKIPIF 1 < 0 在单位圆内,即可求解.
【详解】
因为原点到直线 SKIPIF 1 < 0 的距离为 SKIPIF 1 < 0 ,
所以动直线 SKIPIF 1 < 0 所围成的图形为单位圆,
又动直线始终没有经过点 SKIPIF 1 < 0 ,所以点 SKIPIF 1 < 0 在该单位圆内,
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 的取值范围为 SKIPIF 1 < 0 .
故选:D.
27.A
【解析】
【分析】
复数 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,表示以 SKIPIF 1 < 0 为圆心,2为半径的圆. SKIPIF 1 < 0 表示圆上的点与点 SKIPIF 1 < 0 的距离,求出 SKIPIF 1 < 0 即可得出.
【详解】
复数 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,表示以 SKIPIF 1 < 0 为圆心,2为半径的圆.
SKIPIF 1 < 0 表示圆上的点与点 SKIPIF 1 < 0 的距离.
SKIPIF 1 < 0 .
SKIPIF 1 < 0 的最大值是 SKIPIF 1 < 0 .
故选:A.
【点睛】
本题考查复数的几何意义、圆的方程,求解时注意方程 SKIPIF 1 < 0 表示的圆的半径为2,而不是 SKIPIF 1 < 0 .
28.A
【解析】
【分析】
设 SKIPIF 1 < 0 的中点为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,则由题意可得点 SKIPIF 1 < 0 在以 SKIPIF 1 < 0 为圆心,1为半径的圆上,从而可得 SKIPIF 1 < 0 的最小值即为圆心 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离减去半径1,进而可求得答案
【详解】
由 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ,所以圆心 SKIPIF 1 < 0 ,半径 SKIPIF 1 < 0 ,
设 SKIPIF 1 < 0 的中点为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,半径 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
所以点 SKIPIF 1 < 0 在以 SKIPIF 1 < 0 为圆心,1为半径的圆上,
所以 SKIPIF 1 < 0 的最小值即为圆心 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离减去半径1,
所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 的最小值为 SKIPIF 1 < 0 ,
故选:A
29.C
【解析】
求得圆 SKIPIF 1 < 0 的圆心和半径,由此求得圆上一点到原点的距离的最大值.
【详解】
圆 SKIPIF 1 < 0 的圆心为 SKIPIF 1 < 0 ,半径为 SKIPIF 1 < 0 ,
圆心到原点的距离为 SKIPIF 1 < 0 ,
所以圆上一点到原点的距离的最大值为 SKIPIF 1 < 0 .
故选:C
【点睛】
本小题主要考查点和圆的位置关系,属于基础题.
30.A
【解析】
【分析】
先化简曲线方程,判断曲线的形状,明确 SKIPIF 1 < 0 的几何意义,结合图像解答.
【详解】
SKIPIF 1 < 0 , SKIPIF 1 < 0 表示以 SKIPIF 1 < 0 为圆心,3为半径的圆.
SKIPIF 1 < 0 SKIPIF 1 < 0 表示以圆 SKIPIF 1 < 0 上的任意一点 SKIPIF 1 < 0 到 SKIPIF 1 < 0 两点间距离, SKIPIF 1 < 0 的最大值即为 SKIPIF 1 < 0
故选:A
31.A
【解析】
数形结合分析可得,当 SKIPIF 1 < 0 时能够取得 SKIPIF 1 < 0 的最小值,根据点到圆心的距离减去半径求解即可.
【详解】
由对勾函数的性质,可知 SKIPIF 1 < 0 ,当且仅当 SKIPIF 1 < 0 时取等号,
结合图象可知当A点运动到 SKIPIF 1 < 0 时能使点 SKIPIF 1 < 0 到圆心的距离最小,
最小为4,从而 SKIPIF 1 < 0 的最小值为 SKIPIF 1 < 0 .
故选:A
【点睛】
本题考查两动点间距离的最值问题,考查转化思想与数形结合思想,属于中档题.
32.A
【解析】
【分析】
设 SKIPIF 1 < 0 ,由切线长公式得 SKIPIF 1 < 0 ,由此得关于 SKIPIF 1 < 0 的恒等式,恒等式知识可求得 SKIPIF 1 < 0 值,从而得结论,注意两圆外离.
【详解】
设 SKIPIF 1 < 0 .∵过直线 SKIPIF 1 < 0 上任意一点P分别作圆 SKIPIF 1 < 0 的切线,切点分别为M,N,且均保持 SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 且 SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 或 SKIPIF 1 < 0
∵圆 SKIPIF 1 < 0 与圆 SKIPIF 1 < 0 外离,
∴ SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,
故选:A.
33.A
【解析】
【分析】
由题意可判断直线与圆相离,根据圆的知识可知,四点 SKIPIF 1 < 0 共圆,且 SKIPIF 1 < 0 ,根据 SKIPIF 1 < 0 可知,当直线 SKIPIF 1 < 0 时, SKIPIF 1 < 0 最小,求出以 SKIPIF 1 < 0 为直径的圆的方程,根据圆系的知识即可求出直线 SKIPIF 1 < 0 的方程.
【详解】
解:圆的方程可化为 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离为 SKIPIF 1 < 0 ,所以直线 SKIPIF 1 < 0 与圆相离.
依圆的知识可知,四点 SKIPIF 1 < 0 四点共圆,且 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,而 SKIPIF 1 < 0 ,
当直线 SKIPIF 1 < 0 时, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,此时 SKIPIF 1 < 0 最小.
∴ SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,由 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 .
所以以 SKIPIF 1 < 0 为直径的圆的方程为 SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 ,
两圆的方程相减可得: SKIPIF 1 < 0 ,即为直线 SKIPIF 1 < 0 的方程.
故选:A .
【点睛】
本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.
34.B
【解析】
【分析】
设圆心 SKIPIF 1 < 0 ,由圆的对称性可知过点 SKIPIF 1 < 0 与 SKIPIF 1 < 0 垂直的直线被圆所截的弦长最短
【详解】
由题意可知,当过圆心且过点 SKIPIF 1 < 0 时所得弦为直径,
当与这条直径垂直时所得弦长最短,
圆心为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
则由两点间斜率公式可得 SKIPIF 1 < 0 ,
所以与 SKIPIF 1 < 0 垂直的直线斜率为 SKIPIF 1 < 0 ,
则由点斜式可得过点 SKIPIF 1 < 0 的直线方程为 SKIPIF 1 < 0 ,
化简可得 SKIPIF 1 < 0 ,
故选:B
35.A
【解析】
【分析】
首先求出 SKIPIF 1 < 0 ,即可求出 SKIPIF 1 < 0 ,再求出圆心到直线的距离,即可求出三角形的高的取值范围,从而得到面积的取值范围;
【详解】
解: SKIPIF 1 < 0 直线 SKIPIF 1 < 0 分别与 SKIPIF 1 < 0 轴, SKIPIF 1 < 0 轴交于 SKIPIF 1 < 0 , SKIPIF 1 < 0 两点,
SKIPIF 1 < 0 令 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ,令 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
圆 SKIPIF 1 < 0 的圆心坐标为 SKIPIF 1 < 0 ,半径 SKIPIF 1 < 0 ,则圆心 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 在圆 SKIPIF 1 < 0 上,所以三角形的高 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0
故选:A
36.B
【解析】
【分析】
分析可知当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 最大,计算出 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,进而可计算得出四边形 SKIPIF 1 < 0 ( SKIPIF 1 < 0 为坐标原点)面积.
【详解】
圆 SKIPIF 1 < 0 的圆心为坐标原点 SKIPIF 1 < 0 ,连接 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 取最小值时, SKIPIF 1 < 0 ,此时 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 ,
此时, SKIPIF 1 < 0 .
故选:B.
37.D
【解析】
【分析】
分析出直线 SKIPIF 1 < 0 ,且直线 SKIPIF 1 < 0 过原点,直线 SKIPIF 1 < 0 过定点 SKIPIF 1 < 0 ,直线 SKIPIF 1 < 0 过定点 SKIPIF 1 < 0 ,求出点P的轨迹是以OM为直径的圆,求出圆心到点N的距离,再加上半径即可得解.
【详解】
由于 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
易知直线 SKIPIF 1 < 0 过原点,
将直线 SKIPIF 1 < 0 的方程化为 SKIPIF 1 < 0 ,由 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
所以,直线 SKIPIF 1 < 0 过定点 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,直线 SKIPIF 1 < 0 的方程为 SKIPIF 1 < 0 ,
直线 SKIPIF 1 < 0 的方程可化为 SKIPIF 1 < 0 ,由 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
所以,直线 SKIPIF 1 < 0 过定点 SKIPIF 1 < 0 ,如下图所示:
设线段OM的中点为点E,则 SKIPIF 1 < 0 ,
若点P不与O或M重合,由于 SKIPIF 1 < 0 ,由直角三角形的性质可得 SKIPIF 1 < 0 ;
若点P与O或M重合,满足 SKIPIF 1 < 0 .
由上可知,点P的轨迹是以OM为直径的圆E,该圆圆心为 SKIPIF 1 < 0 ,半径为 SKIPIF 1 < 0 .
设点E到直线 SKIPIF 1 < 0 的距离为d,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ;
当EN不与 SKIPIF 1 < 0 垂直时, SKIPIF 1 < 0 .
综上, SKIPIF 1 < 0 .
所以,点P到直线 SKIPIF 1 < 0 的距离的最大值为 SKIPIF 1 < 0 .
故选:D.
【点睛】
方法点睛:解析几何的最值问题的求解,常用的方法有:(1)函数法;(2)导数法;(3)数形结合法;(4)基本不等式法.要根据已知条件灵活选择方法求解.
38.C
【解析】
【分析】
讨论点M在x轴上与不在x轴上两种情况,若点M不在x轴上,构造点K(-2,0),可以根据三角形的相似性得到 SKIPIF 1 < 0 ,进而得到2|MA|+|MB|=|MB|+|MK|,最后根据三点共线求出答案.
【详解】
①当点M在x轴上时,点M的坐标为(-1,0)或(1,0).
若点M的坐标为(-1,0),则2|MA|+|MB|=2× SKIPIF 1 < 0 + SKIPIF 1 < 0 ;
若点M的坐标为(1,0),则2|MA|+|MB|=2× SKIPIF 1 < 0 + SKIPIF 1 < 0 .
②当点M不在x轴上时,取点K(-2,0),如图,
连接OM,MK,因为|OM|=1,|OA|= SKIPIF 1 < 0 ,|OK|=2,
所以 SKIPIF 1 < 0 .
因为∠MOK=∠AOM,
所以△MOK∽△AOM,则 SKIPIF 1 < 0 ,
所以|MK|=2|MA|,则2|MA|+|MB|=|MB|+|MK|.
易知|MB|+|MK|≥|BK|,
所以|MB|+|MK|的最小值为|BK|.
因为B(1,1),K(-2,0),
所以(2|MA|+|MB|)min
=|BK|= SKIPIF 1 < 0 .
又 SKIPIF 1 < 0 <1+ SKIPIF 1 < 0 <4,所以2|MA|+|MB|的最小值为 SKIPIF 1 < 0 .
故选:C
39.B
【解析】
【分析】
根据已知条件先确定出点 SKIPIF 1 < 0 的轨迹方程,然后将问题转化为“以 SKIPIF 1 < 0 为直径的圆要包括圆 SKIPIF 1 < 0 ”,由此利用圆心 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离结合点 SKIPIF 1 < 0 的轨迹所表示圆的半径可求解出 SKIPIF 1 < 0 的最小值.
【详解】
由题可知: SKIPIF 1 < 0 ,圆心 SKIPIF 1 < 0 ,半径 SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 , SKIPIF 1 < 0 是 SKIPIF 1 < 0 的中点,所以 SKIPIF 1 < 0 ,
所以点 SKIPIF 1 < 0 的轨迹方程 SKIPIF 1 < 0 ,圆心为点 SKIPIF 1 < 0 ,半径为 SKIPIF 1 < 0 ,
若直线 SKIPIF 1 < 0 上存在两点 SKIPIF 1 < 0 ,使得 SKIPIF 1 < 0 恒成立,
则以 SKIPIF 1 < 0 为直径的圆要包括圆 SKIPIF 1 < 0 ,
点 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离为 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 长度的最小值为 SKIPIF 1 < 0 ,
故选:B.
【点睛】
关键点点睛:解答本题的关键在于点 SKIPIF 1 < 0 轨迹方程的求解以及转化思想的运用,根据弦中点以及线段长度可求点 SKIPIF 1 < 0 轨迹方程,其次“ SKIPIF 1 < 0 恒成立”转化为“以 SKIPIF 1 < 0 为直径的圆包括 SKIPIF 1 < 0 的轨迹”,结合圆心到直线的距离加上半径可分析 SKIPIF 1 < 0 的最小值.
40.A
【解析】
【分析】
根据直线 SKIPIF 1 < 0 是圆 SKIPIF 1 < 0 的对称轴,则圆心在直线l上,求得 SKIPIF 1 < 0 ,由过点 SKIPIF 1 < 0 作圆C的一条切线,切点为B,利用勾股定理即可求得 SKIPIF 1 < 0 .
【详解】
由方程 SKIPIF 1 < 0 得 SKIPIF 1 < 0 ,圆心为 SKIPIF 1 < 0 ,
因为直线l是圆C的对称轴,所以圆心在直线l上,所以 SKIPIF 1 < 0 ,所以A点坐标为 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .
故选:A.
41.ACD
【解析】
【分析】
设 SKIPIF 1 < 0 ,由此据圆的切线性质表示出 SKIPIF 1 < 0 ,则即可表示出四边形PAMB周长,进而求得其最小值,从而判断A的对错;利用 SKIPIF 1 < 0 表示出
SKIPIF 1 < 0 ,由此可判断B的对错;根据圆的切线性质表示出切线方程,进而求出AB的直线方程,求其过的定点坐标,可判断C对错;判断C点位于某个圆上,可知出其圆心和C点距离为定值,从而判断D的对错.
【详解】
如图示:
设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
所以四边形PAMB周长为 SKIPIF 1 < 0 ,
当P点位于原点时,t 取值最小2,
故当t取最小值2时,四边形PAMB周长取最小值为 SKIPIF 1 < 0 ,故A正确;
由 SKIPIF 1 < 0 可得: SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ,而 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,故B错误;
设 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 方程为: SKIPIF 1 < 0 ,
SKIPIF 1 < 0 的方程为 SKIPIF 1 < 0 ,
而 SKIPIF 1 < 0 在切线 SKIPIF 1 < 0 , SKIPIF 1 < 0 上,故 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
故AB的直线方程为 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,即AB过定点 SKIPIF 1 < 0 ,故C正确;
由圆的切线性质可知 SKIPIF 1 < 0 ,设AB过定点为D SKIPIF 1 < 0 ,
则D点位于以MD为直径的圆上,设MD的中点为N,则 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 为定值,即D正确,
故选:ACD.
42.ABC
【解析】
由题意画出图形,求出圆心到直线 SKIPIF 1 < 0 距离的最大值,加半径可得点 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 距离的最大值,观察选项大小得答案.
【详解】
解:如图,
圆 SKIPIF 1 < 0 : SKIPIF 1 < 0 的圆心坐标为 SKIPIF 1 < 0 ,半径为 SKIPIF 1 < 0 ,
直线 SKIPIF 1 < 0 过定点 SKIPIF 1 < 0 ,由图可知,
圆心 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 距离的最大值为 SKIPIF 1 < 0 ,
则点 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 距离的最大值为 SKIPIF 1 < 0 .
ABC中的值均不大于 SKIPIF 1 < 0 ,只有D不符合.
故选:ABC.
【点睛】
本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法,是中档题.
43.ACD
【解析】
根据题意,设T为切点,分析圆的圆心与半径,可得|PT| SKIPIF 1 < 0 ,进而可得|PT|的最小值,分析选项即可得解.
【详解】
根据题意,由点P向圆O:x2+y2=4做切线,设T为切点,连接OP、OT,如图:
圆O:x2+y2=4,其圆心为(0,0),半径r=2;
则切线长 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 最小时, SKIPIF 1 < 0 最小,
当PO与直线垂直时, SKIPIF 1 < 0 取最小值,则 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
分析选项:A、C、D都满足 SKIPIF 1 < 0 ,符合题意.
故选:ACD.
【点睛】
本题考查了直线与圆相切的性质,涉及切线长的计算,属于基础题.
44.BD
【解析】
【分析】
求出以 SKIPIF 1 < 0 为直径的圆的方程,与圆 SKIPIF 1 < 0 的方程联立可得直线 SKIPIF 1 < 0 的方程判断A;求出直线 SKIPIF 1 < 0 所过定点,得到圆心到直线 SKIPIF 1 < 0 的最小距离,再由垂径定理求 SKIPIF 1 < 0 被圆 SKIPIF 1 < 0 截得的最短弦的长判断B;直接求出四边形 SKIPIF 1 < 0 的面积判断C;求解 SKIPIF 1 < 0 ,再分别减去 SKIPIF 1 < 0 的外接圆半径与加上 SKIPIF 1 < 0 的外接圆半径求得 SKIPIF 1 < 0 的取值范围判断D.
【详解】
对于A,圆 SKIPIF 1 < 0 的圆心坐标为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的中点为 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,则以 SKIPIF 1 < 0 为直径的圆的方程为 SKIPIF 1 < 0 ,
又圆 SKIPIF 1 < 0 : SKIPIF 1 < 0 ,
两式作差可得直线 SKIPIF 1 < 0 的方程是 SKIPIF 1 < 0 ,故A错误;
对于B,直线 SKIPIF 1 < 0 : SKIPIF 1 < 0 可化为 SKIPIF 1 < 0 ,
联立 SKIPIF 1 < 0 ,解得直线 SKIPIF 1 < 0 过定点 SKIPIF 1 < 0 ,
且定点 SKIPIF 1 < 0 在圆内,当且仅当 SKIPIF 1 < 0 时,弦长 SKIPIF 1 < 0 最短,又 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 的最小值为 SKIPIF 1 < 0 ,故B正确;
对于C,四边形 SKIPIF 1 < 0 的对角线 SKIPIF 1 < 0 、 SKIPIF 1 < 0 互相垂直,
则四边形 SKIPIF 1 < 0 的面积 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,故C错误;
对于D,由题意知, SKIPIF 1 < 0 的外接圆恰好是经过 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 四点的圆,
因为 SKIPIF 1 < 0 的中点 SKIPIF 1 < 0 为外接圆的圆心,
所以圆上的点 SKIPIF 1 < 0 到点 SKIPIF 1 < 0 距离最小值是 SKIPIF 1 < 0 ,
最大值是 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 的取值范围为 SKIPIF 1 < 0 ,故D正确.
故选:BD.
45.①②④
【解析】
【分析】
由已知可得直线过圆心即得 SKIPIF 1 < 0 ;利用勾股定理可得切线段长度,利用圆心到直线的距离为半径即得斜率;因为直线恒过的定点在圆内,可得直线与圆相交.
【详解】
SKIPIF 1 < 0 则圆心为 SKIPIF 1 < 0 半径为3,
SKIPIF 1 < 0 是圆的对称轴,故直线过圆心 SKIPIF 1 < 0 ,
故 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 , SKIPIF 1 < 0 ;
设直线AB的斜率为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0
因为直线AB为圆C的一条切线,
故圆心 SKIPIF 1 < 0 到直线AB的距离为 SKIPIF 1 < 0 解得 SKIPIF 1 < 0 ;
直线 SKIPIF 1 < 0 即对任意的实数m,直线恒过 SKIPIF 1 < 0 ,
代入 SKIPIF 1 < 0 得 SKIPIF 1 < 0 在圆内,
即直线 SKIPIF 1 < 0 与圆C的位置关系都是相交.
故答案为:①②④
46.12
【解析】
【分析】
根据椭圆定义及圆心位置、半径,应用分析法要使 SKIPIF 1 < 0 最大只需让 SKIPIF 1 < 0 最大即可,由数形结合的方法分析知 SKIPIF 1 < 0 共线时有最大值,进而求目标式的最大值.
【详解】
由题意得: SKIPIF 1 < 0 ,根据椭圆的定义得 SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,
圆 SKIPIF 1 < 0 变形得 SKIPIF 1 < 0 ,即圆心 SKIPIF 1 < 0 ,半径 SKIPIF 1 < 0 ,
要使 SKIPIF 1 < 0 最大,即 SKIPIF 1 < 0 最大,又 SKIPIF 1 < 0 ,
∴使 SKIPIF 1 < 0 最大即可.
如图所示:
∴当 SKIPIF 1 < 0 共线时, SKIPIF 1 < 0 有最大值为 SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 的最大值为 SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 的最大值,即 SKIPIF 1 < 0 的最大值为11+1=12,
故答案为:12
47.②③④
【解析】
【分析】
根据双曲线渐近线的倾斜角判断①;利用双曲线的性质和切线长的定义判断②;根据平面几何的知识得 SKIPIF 1 < 0 后,再根据直角三角形相似求得 SKIPIF 1 < 0 判断③;根据 SKIPIF 1 < 0 得 SKIPIF 1 < 0 范围,再根据基本不等式求解即可.
【详解】
解: 如图,设 SKIPIF 1 < 0 与圆的切点分别为 SKIPIF 1 < 0 ,
由切线的性质得 SKIPIF 1 < 0 的横坐标相等,
SKIPIF 1 < 0 ,
由双曲线的定义得 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 的横坐标 SKIPIF 1 < 0 ,
同理可得 SKIPIF 1 < 0 的横坐标也是 SKIPIF 1 < 0 ,
对于①,双曲线 SKIPIF 1 < 0 的渐近线方程为 SKIPIF 1 < 0 ,倾斜角分别为 SKIPIF 1 < 0 ,故当过 SKIPIF 1 < 0 且倾斜角 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 时,直线与双曲线的右支交于 SKIPIF 1 < 0 两点,故错误;
对于②,由于 SKIPIF 1 < 0 两点横坐标相等,故直线 SKIPIF 1 < 0 与 SKIPIF 1 < 0 轴垂直,正确;
对于③,连接 SKIPIF 1 < 0 ,由三角形的内切圆圆心是角平分线的交点得 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 时,解得 SKIPIF 1 < 0 ,此时直线 SKIPIF 1 < 0 轴, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,故正确;
对于④,因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,又因为 SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,故正确.
故答案为:②③④
48. SKIPIF 1 < 0 ## SKIPIF 1 < 0
【解析】
【分析】
根据题意,由圆的方程求出圆的圆心和半径,作出草图,由圆的切线性质分析可得|OP|=2|OA|,然后可算出答案.
【详解】
根据题意,如图:x2+y2=25的圆心为(0,0),半径R=5,即|OP|=5,
圆O:x2+y2=m2,圆心为(0,0),半径r=m,则|OA|=|OB|=m,
若∠AOB=120°,则∠APB=60°,∠OPA=30°,
又由OA⊥AP,则|OP|=2|OA|,则m SKIPIF 1 < 0 .
故答案为: SKIPIF 1 < 0 .
49. SKIPIF 1 < 0
【解析】
【分析】
作 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,分析可知则点 SKIPIF 1 < 0 在以线段 SKIPIF 1 < 0 为直径的圆 SKIPIF 1 < 0 上,点 SKIPIF 1 < 0 在以点 SKIPIF 1 < 0 为圆心, SKIPIF 1 < 0 为半径的圆 SKIPIF 1 < 0 上,可得 SKIPIF 1 < 0 ,设 SKIPIF 1 < 0 ,利用圆的几何性质结合二次函数的基本性质可求得 SKIPIF 1 < 0 的最大值.
【详解】
因为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
作 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
固定点 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 为 SKIPIF 1 < 0 的中点,则点 SKIPIF 1 < 0 在以线段 SKIPIF 1 < 0 为直径的圆 SKIPIF 1 < 0 上,
点 SKIPIF 1 < 0 在以点 SKIPIF 1 < 0 为圆心, SKIPIF 1 < 0 为半径的圆 SKIPIF 1 < 0 上,如下图所示:
SKIPIF 1 < 0 ,
设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
故 SKIPIF 1 < 0
SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时,等号成立,即 SKIPIF 1 < 0 的最大值为 SKIPIF 1 < 0 .
故答案为: SKIPIF 1 < 0 .
【点睛】
方法点睛:求向量模的常见思路与方法:
(1)求模问题一般转化为求模的平方,与向量数量积联系,并灵活应用 SKIPIF 1 < 0 ,勿忘记开方;
(2) SKIPIF 1 < 0 或 SKIPIF 1 < 0 ,此性质可用来求向量的模,可实现实数运算与向量运算的相互转化;
(3)一些常见的等式应熟记:如 SKIPIF 1 < 0 , SKIPIF 1 < 0 等.
50.9
【解析】
【分析】
连接 SKIPIF 1 < 0 ,要求 SKIPIF 1 < 0 的最小值,可以转化为求 SKIPIF 1 < 0 点到两个圆心的距离再减去两个圆的半径的和的最小值,从而可得答案.
【详解】
由题意点C1(-6,5)半径为2,C2(2,1)半径为1,
设点C1关于直线 SKIPIF 1 < 0 的对称点为C3( SKIPIF 1 < 0 , SKIPIF 1 < 0 ),
如图:
则 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,即C3(-10,1),连接C2C3,
求 SKIPIF 1 < 0 的最小值可以转化为P点到两个圆心的距离再减去两个圆的半径的和的最小值,
再由点C1、C3关于直线 SKIPIF 1 < 0 的对称,
所以 SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 ,故答案为9.
51.(1) SKIPIF 1 < 0 ; SKIPIF 1 < 0
(2) SKIPIF 1 < 0
【解析】
【分析】
小问1:根据曲线 SKIPIF 1 < 0 的参数方程消去参数 SKIPIF 1 < 0 可得曲线 SKIPIF 1 < 0 的普通方程,将直线 SKIPIF 1 < 0 的极坐标方程展开再将 SKIPIF 1 < 0 代入可得 SKIPIF 1 < 0 的直角坐标方程;
小问2:由圆心到直线l的距离为 SKIPIF 1 < 0 ,直线l与圆C相离,则 SKIPIF 1 < 0 ,即可得结果.
(1)
由题意, SKIPIF 1 < 0 ,
所以曲线C的普通方程为 SKIPIF 1 < 0 .
根据题意得, SKIPIF 1 < 0 ,
直线l的普通方程为 SKIPIF 1 < 0 .
(2)
根据题意,得曲线C是圆心为 SKIPIF 1 < 0 ,半径为 SKIPIF 1 < 0 的圆,
圆心到直线l的距离为 SKIPIF 1 < 0 ,
所以直线l与圆C相离,则 SKIPIF 1 < 0 ,
即d的取值范围为 SKIPIF 1 < 0 .
52.(1)最小值为11,最大值为51;(2)最大值是-2+ SKIPIF 1 < 0 ,最小值为-2- SKIPIF 1 < 0 .
【解析】
【分析】
(1)根据x2+y2+2x+3的几何意义求解,即求得 SKIPIF 1 < 0 到圆心 SKIPIF 1 < 0 的距离,由这个距离加减半径后平方可得最大值和最小值.
(2)设 SKIPIF 1 < 0 ,代入已知等式,利用 SKIPIF 1 < 0 可得 SKIPIF 1 < 0 的最大值和最小值.
【详解】
解:(1)圆方程化为(x-3)2+(y-3)2=4,圆心C(3,3),半径r=2.
x2+y2+2x+3=(x+1)2+y2+2表示圆上点P(x,y)与定点A(-1,0)连线线段长度d的平方加上2.
因为|AC|=5,所以3≤d≤7,
所以所求最小值为11,最大值为51.
(2)方程 (x-2)2+y2=3,表示以(2,0)为圆心, SKIPIF 1 < 0 为半径的圆.
SKIPIF 1 < 0 的几何意义是圆上一点与点(0,1)连线的斜率,所以设 SKIPIF 1 < 0 =k,即y=kx+1.当直线y=kx+1与圆相切时,斜率取最大值和最小值,此时 SKIPIF 1 < 0 = SKIPIF 1 < 0 ,解得k=-2± SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 的最大值是-2+ SKIPIF 1 < 0 ,最小值为-2- SKIPIF 1 < 0 .
【点睛】
方法点睛:本题考查求平方型和分式型代数式的最值,解题方法是利用其几何意义求解,平方型代数式可以理解为两点间距离的平方,利用两点间距离的最值求得结论,分式型代数式可以理解为两点连线斜率,从而利用直线与圆相交问题,利用判别式求得最值.
53.(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
【解析】
(1)设圆 SKIPIF 1 < 0 的方程为: SKIPIF 1 < 0 ,将 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,两点坐标代入圆的一般方程,将圆心 SKIPIF 1 < 0 代入, SKIPIF 1 < 0 得出关于 SKIPIF 1 < 0 的方程组,解出这三个未知数的值,可得出圆 SKIPIF 1 < 0 的一般方程;
(2)由轨迹法求得 SKIPIF 1 < 0 的轨迹方程为 SKIPIF 1 < 0 ,通过数形结合可知, SKIPIF 1 < 0 与 SKIPIF 1 < 0 相切时, SKIPIF 1 < 0 取最大值,计算即可得解.
【详解】
(1)设圆 SKIPIF 1 < 0 的方程为: SKIPIF 1 < 0 ,
则有 SKIPIF 1 < 0
解得 SKIPIF 1 < 0 解得: SKIPIF 1 < 0 .
∴圆 SKIPIF 1 < 0 的方程为: SKIPIF 1 < 0 .
(2)由(1)知 SKIPIF 1 < 0 : SKIPIF 1 < 0 ,
设 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 在圆 SKIPIF 1 < 0 : SKIPIF 1 < 0 上,∴ SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,
SKIPIF 1 < 0 的轨迹方程为 SKIPIF 1 < 0 .
数形结合易知当 SKIPIF 1 < 0 与 SKIPIF 1 < 0 相切时, SKIPIF 1 < 0 取最大值,
此时 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .
54.(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
【解析】
【分析】
(1)根据圆的几何性质可得出关于 SKIPIF 1 < 0 的等式,即可解出 SKIPIF 1 < 0 的值;
(2)设点 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,利用导数求出直线 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,进一步可求得直线 SKIPIF 1 < 0 的方程,将直线 SKIPIF 1 < 0 的方程与抛物线的方程联立,求出 SKIPIF 1 < 0 以及点 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离,利用三角形的面积公式结合二次函数的基本性质可求得 SKIPIF 1 < 0 面积的最大值.
【详解】
(1)[方法一]:利用二次函数性质求最小值
由题意知, SKIPIF 1 < 0 ,设圆M上的点 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 .
所以 SKIPIF 1 < 0 .
从而有 SKIPIF 1 < 0 SKIPIF 1 < 0 .
因为 SKIPIF 1 < 0 ,所以当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 .
又 SKIPIF 1 < 0 ,解之得 SKIPIF 1 < 0 ,因此 SKIPIF 1 < 0 .
[方法二]【最优解】:利用圆的几何意义求最小值
抛物线 SKIPIF 1 < 0 的焦点为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
所以, SKIPIF 1 < 0 与圆 SKIPIF 1 < 0 上点的距离的最小值为 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ;
(2)[方法一]:切点弦方程+韦达定义判别式求弦长求面积法
抛物线 SKIPIF 1 < 0 的方程为 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,对该函数求导得 SKIPIF 1 < 0 ,
设点 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,
直线 SKIPIF 1 < 0 的方程为 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
同理可知,直线 SKIPIF 1 < 0 的方程为 SKIPIF 1 < 0 ,
由于点 SKIPIF 1 < 0 为这两条直线的公共点,则 SKIPIF 1 < 0 ,
所以,点A、 SKIPIF 1 < 0 的坐标满足方程 SKIPIF 1 < 0 ,
所以,直线 SKIPIF 1 < 0 的方程为 SKIPIF 1 < 0 ,
联立 SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ,
由韦达定理可得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
所以, SKIPIF 1 < 0 ,
点 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离为 SKIPIF 1 < 0 ,
所以, SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
由已知可得 SKIPIF 1 < 0 ,所以,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 的面积取最大值 SKIPIF 1 < 0 .
[方法二]【最优解】:切点弦法+分割转化求面积+三角换元求最值
同方法一得到 SKIPIF 1 < 0 .
过P作y轴的平行线交 SKIPIF 1 < 0 于Q,则 SKIPIF 1 < 0 .
SKIPIF 1 < 0 .
P点在圆M上,则 SKIPIF 1 < 0
SKIPIF 1 < 0 .
故当 SKIPIF 1 < 0 时 SKIPIF 1 < 0 的面积最大,最大值为 SKIPIF 1 < 0 .
[方法三]:直接设直线AB方程法
设切点A,B的坐标分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
设 SKIPIF 1 < 0 ,联立 SKIPIF 1 < 0 和抛物线C的方程得 SKIPIF 1 < 0 整理得 SKIPIF 1 < 0 .
判别式 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .
抛物线C的方程为 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,有 SKIPIF 1 < 0 .
则 SKIPIF 1 < 0 ,整理得 SKIPIF 1 < 0 ,同理可得 SKIPIF 1 < 0 .
联立方程 SKIPIF 1 < 0 可得点P的坐标为 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 .
将点P的坐标代入圆M的方程,得 SKIPIF 1 < 0 ,整理得 SKIPIF 1 < 0 .
由弦长公式得 SKIPIF 1 < 0 SKIPIF 1 < 0 .
点P到直线 SKIPIF 1 < 0 的距离为 SKIPIF 1 < 0 .
所以 SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 ,
其中 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 .
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 .
【整体点评】
(1)方法一利用两点间距离公式求得 SKIPIF 1 < 0 关于圆M上的点 SKIPIF 1 < 0 的坐标的表达式,进一步转化为关于 SKIPIF 1 < 0 的表达式,利用二次函数的性质得到最小值,进而求得 SKIPIF 1 < 0 的值;方法二,利用圆的性质, SKIPIF 1 < 0 与圆 SKIPIF 1 < 0 上点的距离的最小值,简洁明快,为最优解;(2)方法一设点 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,利用导数求得两切线方程,由切点弦方程思想得到直线 SKIPIF 1 < 0 的坐标满足方程 SKIPIF 1 < 0 ,然手与抛物线方程联立,由韦达定理可得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,利用弦长公式求得 SKIPIF 1 < 0 的长,进而得到面积关于 SKIPIF 1 < 0 坐标的表达式,利用圆的方程转化得到关于 SKIPIF 1 < 0 的二次函数最值问题;方法二,同方法一得到 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,过P作y轴的平行线交 SKIPIF 1 < 0 于Q,则 SKIPIF 1 < 0 .由 SKIPIF 1 < 0 求得面积关于 SKIPIF 1 < 0 坐标的表达式,并利用三角函数换元求得面积最大值,方法灵活,计算简洁,为最优解;方法三直接设直线 SKIPIF 1 < 0 ,联立直线 SKIPIF 1 < 0 和抛物线方程,利用韦达定理判别式得到 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .利用点 SKIPIF 1 < 0 在圆 SKIPIF 1 < 0 上,求得 SKIPIF 1 < 0 的关系,然后利用导数求得两切线方程,解方程组求得P的坐标 SKIPIF 1 < 0 ,进而利用弦长公式和点到直线距离公式求得面积关于 SKIPIF 1 < 0 的函数表达式,然后利用二次函数的性质求得最大值;
55.(1)外离;
(2) SKIPIF 1 < 0 ﹒
【解析】
【分析】
(1)判断两圆圆心距和两圆半径之和及半径之差的关系即可判断两圆的位置关系;
(2)根据圆的性质可知 SKIPIF 1 < 0 ,作 SKIPIF 1 < 0 关于 SKIPIF 1 < 0 (1,2)关于x轴的对称点 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,据此即可求得答案.
(1)
圆 SKIPIF 1 < 0 的圆心为 SKIPIF 1 < 0 (1,2),半径为1,圆 SKIPIF 1 < 0 的圆心为 SKIPIF 1 < 0 (3,4),半径为 SKIPIF 1 < 0 ,
∵ SKIPIF 1 < 0 ,∴两圆外离;
(2)
SKIPIF 1 < 0 ,
作 SKIPIF 1 < 0 (1,2)关于x轴的对称点 SKIPIF 1 < 0 ,
则当 SKIPIF 1 < 0 、P、 SKIPIF 1 < 0 三点共线时,所求最小值为 SKIPIF 1 < 0 .
新高考数学一轮复习考点过关练习 数列的单调性与最值(含解析): 这是一份新高考数学一轮复习考点过关练习 数列的单调性与最值(含解析),共34页。
新高考数学一轮复习考点过关练习 数列的单调性与最值(含解析): 这是一份新高考数学一轮复习考点过关练习 数列的单调性与最值(含解析),共33页。
新高考数学一轮复习考点过关练习 等比数列中的最值(范围)问题(含解析): 这是一份新高考数学一轮复习考点过关练习 等比数列中的最值(范围)问题(含解析),共29页。