搜索
    上传资料 赚现金
    新高考数学一轮复习课件 第6章 §6.4 数列中的构造问题[培优课](含详解)
    立即下载
    加入资料篮
    新高考数学一轮复习课件 第6章 §6.4 数列中的构造问题[培优课](含详解)01
    新高考数学一轮复习课件 第6章 §6.4 数列中的构造问题[培优课](含详解)02
    新高考数学一轮复习课件 第6章 §6.4 数列中的构造问题[培优课](含详解)03
    新高考数学一轮复习课件 第6章 §6.4 数列中的构造问题[培优课](含详解)04
    新高考数学一轮复习课件 第6章 §6.4 数列中的构造问题[培优课](含详解)05
    新高考数学一轮复习课件 第6章 §6.4 数列中的构造问题[培优课](含详解)06
    新高考数学一轮复习课件 第6章 §6.4 数列中的构造问题[培优课](含详解)07
    新高考数学一轮复习课件 第6章 §6.4 数列中的构造问题[培优课](含详解)08
    还剩52页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习课件 第6章 §6.4 数列中的构造问题[培优课](含详解)

    展开
    这是一份新高考数学一轮复习课件 第6章 §6.4 数列中的构造问题[培优课](含详解),共60页。PPT课件主要包含了题型一,思维升华,n+1-n-1,题型二,n-1,题型三,倒数为特殊数列,课时精练,故选项AB错误,故选项D正确等内容,欢迎下载使用。

    数列中的构造问题是历年高考的一个热点内容,主、客观题均可出现,一般通过构造新的数列求数列的通项公式.
    例1 (1)数列{an}满足an=4an-1+3(n≥2)且a1=0,则a2 024等于A.22 023-1 B.42 023-1C.22 023+1 D.42 023+1
    形如an+1=pan+f(n)型
    命题点1 an+1=pan+q(p≠0,1,q≠0)
    ∵an=4an-1+3(n≥2),∴an+1=4(an-1+1)(n≥2),∴{an+1}是以1为首项,4为公比的等比数列,则an+1=4n-1.∴an=4n-1-1,∴a2 024=42 023-1.
    为______________.
    例2 已知数列{an}满足an+1=2an-n+1(n∈N*),a1=3,求数列{an}的通项公式.
    命题点2 an+1=pan+qn+c(p≠0,1,q≠0)
    ∵an+1=2an-n+1,∴an+1-(n+1)=2(an-n),
    ∴数列{an-n}是以a1-1=2为首项,2为公比的等比数列,∴an-n=2·2n-1=2n,∴an=2n+n.
    例3 (1)已知数列{an}中,a1=3,an+1=3an+2·3n+1,n∈N*.则数列{an}的通项公式为A.an=(2n+1)·3n B.an=(n-1)·2nC.an=(2n-1)·3n D.an=(n+1)·2n
    命题点3 an+1=pan+qn(p≠0,1,q≠0,1)
    (2)在数列{an}中,a1=1,且满足an+1=6an+3n,则an=________.
    跟踪训练1 (1)在数列{an}中,a1=1,an+1=2an+2n.则数列{an}的通项公式an等于A.n·2n-1 B.n·2nC.(n-1)·2n D.(n+1)·2n
    又b1=1,∴{bn}是首项为1,公差为1的等差数列.∴bn=n,∴an=n·2n-1.
    (2)(2023·黄山模拟)已知数列{an}满足a1=1,(2+an)·(1-an+1)=2,设的前n项和为Sn,则a2 023(S2 023+2 023)的值为A.22 023-2 B.22 023-1C.2 D.1
    S2 023+2 023=2+22+…+22 023=22 024-2,∴a2 023(S2 023+2 023)=2.
    令an+1+x(n+1)+y=2(an+xn+y),即an+1=2an+xn+y-x,
    (3)已知数列{an}满足an+1=2an+n,a1=2,则an=____________.
    所以数列{an+n+1}是以a1+1+1=4为首项,2为公比的等比数列,所以an+n+1=4×2n-1,即an=2n+1-n-1.
    例4 (1)已知数列{an}满足:a1=a2=2,an=3an-1+4an-2(n≥3),则a9+a10等于A.47B.48C.49D.410
    相邻项的差为特殊数列(形如an+1=pan+qan-1)
    由题意得a1+a2=4,由an=3an-1+4an-2(n≥3),得an+an-1=4(an-1+an-2),
    所以数列{an+an+1}是首项为4,公比为4的等比数列,所以a9+a10=49.
    (2)已知数列{an}满足a1=1,a2=2,且an+1=2an+3an-1(n≥2,n∈N*).则数列{an}的通项公式为an=___________.
    方法一 因为an+1=2an+3an-1(n≥2,n∈N*),设bn=an+1+an,
    又因为b1=a2+a1=3,所以{bn}是以首项为3,公比为3的等比数列.所以bn=an+1+an=3×3n-1=3n,
    方法二 因为方程x2=2x+3的两根为-1,3,可设an=c1·(-1)n-1+c2·3n-1,由a1=1,a2=2,
    可以化为an+1-x1an=x2(an-x1an-1),其中x1,x2是方程x2-px-q=0的两个根,若1是方程的根,则直接构造数列{an-an-1},若1不是方程的根,则需要构造两个数列,采取消元的方法求数列{an}.
    跟踪训练2 若x=1是函数f(x)=an+1x4-anx3-an+2x+1(n∈N*)的极值点,数列{an}满足a1=1,a2=3,则数列{an}的通项公式an=______.
    f′(x)=4an+1x3-3anx2-an+2,∴f′(1)=4an+1-3an-an+2=0,即an+2-an+1=3(an+1-an),∴数列{an+1-an}是首项为2,公比为3的等比数列,∴an+1-an=2×3n-1,则an=an-an-1+an-1-an-2+…+a2-a1+a1=2×3n-2+…+2×30+1=3n-1.
    即0<4n-3<37,
    因为n为正整数,所以n的最大取值为9.
    (2)(多选)数列{an}满足an+1= (n∈N*),a1=1,则下列结论正确的是
    C.(2n-1)an=1 D.3a5a17=a49
    则(2n-1)an=1,其中n∈N*,故C对;
    =22=4,所以数列 是等比数列,故B对;
    所以3a5a17≠a49,故D错.
    跟踪训练3 已知函数f(x)= ,数列{an}满足a1=1,an+1=f(an)(n∈N*),则数列{an}的通项公式为_________________.
    1.已知数列{an}满足a1=2,an+1=2an+1,则a4的值为A.15 B.23 C.32 D.42
    因为an+1=2an+1,所以an+1+1=2(an+1),所以{an+1}是以3为首项,2为公比的等比数列,所以an+1=3·2n-1,所以an=3·2n-1-1,a4=23.
    A.2n-3 B.2n-7C.(2n-3)(2n-7) D.2n-5
    所以an=(2n-3)(2n-7).
    3.已知数列{an}满足:a1=1,且an+1-2an=n-1,其中n∈N*,则数列{an}的通项公式为A.an=2n-n B.an=2n+nC.an=3n-1 D.an=3n+1
    由题设,an+1+(n+1)=2(an+n),而a1+1=2,∴{an+n}是首项、公比均为2的等比数列,故an+n=2n,即an=2n-n.
    ∴a1-a2=3a1a2,
    解得a1=1.由题意知an≠0,
    A.2n-1B.3n-1C.D.
    则数列{lg3an}是以lg3a1=1为首项,2为公比的等比数列,则lg3an=1·2n-1=2n-1,即an= .
    6.设数列{an}满足a1=1,an=-an-1+2n(n≥2),则数列的通项公式an等于
    ∵an-1+an=2n,
    即{an}为递减数列,故选项C正确;
    =(22+23+…+2n+1)-3n
    8.将一些数排成如图所示的倒三角形,其中第一行各数依次为1,2,3,…,2 023,从第二行起,每一个数都等于它“肩上”的两个数之和,最后一行只有一个数M,则M等于A.2 023×22 020 B.2 024×22 021C.2 023×22 021 D.2 024×22 022
    记第n行的第一个数为an,则a1=1,a2=3=2a1+1,a3=8=2a2+2,a4=20=2a3+4,…,an=2an-1+2n-2,
    ∴an=(n+1)×2n-2.又每行比上一行的数字少1个,∴最后一行为第2 023行,∴M=a2 023=2 024×22 021.
    10.已知数列{an}满足an+1=3an-2an-1(n≥2,n∈N*),且a1=0,a6=124,则a2=_____.
    由an+1=3an-2an-1(n≥2,n∈N*)可得an+1-an=2(an-an-1),若an-an-1=0,则a6=a5=…=a1,与题中条件矛盾,故an-an-1≠0,
    即数列{an+1-an}是以a2-a1为首项,2为公比的等比数列,所以an+1-an=a2·2n-1,所以a6-a1=a2-a1+a3-a2+a4-a3+a5-a4+a6-a5=a2·20+a2·21+a2·22+a2·23+a2·24=31a2=124,所以a2=4.
    11.在数列{an}中,a1=1,且满足an+1=3an+2n,则an=_____________.
    ∵an+1=3an+2n①,∴an=3an-1+2(n-1)(n≥2),两式相减得,an+1-an=3(an-an-1)+2,令bn=an+1-an,则bn=3bn-1+2(n≥2),利用求an+1=pan+q的方法知,bn=5·3n-1-1,即an+1-an=5·3n-1-1②,
    ∵f(x)=2x2-8,∴f′(x)=4x,
    相关课件

    新高考数学一轮复习课件 第3章 §3.4 函数中的构造问题[培优课](含详解): 这是一份新高考数学一轮复习课件 第3章 §3.4 函数中的构造问题[培优课](含详解),共54页。PPT课件主要包含了题型一,导数型构造函数,思维升华,3+∞,题型二,同构法构造函数,∵αβ均为锐角,课时精练,2+∞等内容,欢迎下载使用。

    新高考数学一轮复习讲练测课件第6章§6.4数列中的构造问题[培优课] (含解析): 这是一份新高考数学一轮复习讲练测课件第6章§6.4数列中的构造问题[培优课] (含解析),共60页。PPT课件主要包含了题型一,思维升华,n+1-n-1,题型二,n-1,题型三,倒数为特殊数列,课时精练,故选项AB错误,故选项D正确等内容,欢迎下载使用。

    2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课]课件PPT: 这是一份2024年高考数学一轮复习(新高考版) 第6章 §6.4 数列中的构造问题[培优课]课件PPT,共60页。PPT课件主要包含了题型一,思维升华,n+1-n-1,题型二,n-1,题型三,倒数为特殊数列,课时精练,故选项AB错误,故选项D正确等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新高考数学一轮复习课件 第6章 §6.4 数列中的构造问题[培优课](含详解)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map