新高考数学一轮复习导学案第53讲 空间向量的概念(2份打包,原卷版+解析版)
展开1.空间向量及其有关概念
2.数量积及坐标运算
(1)两个空间向量的数量积:①a·b=|a||b|cs〈a,b〉;②a⊥b⇔a·b=0(a,b为非零向量);③设a=(x,y,z),则|a|2=a2,|a|=eq \r(x2+y2+z2).
(2)空间向量的坐标运算:
1、在下列命题中:
①若向量a,b共线,则向量a,b所在的直线平行;
②若向量a,b所在的直线为异面直线,则向量a,b一定不共面;
③若三个向量a,b,c两两共面,则向量a,b,c共面;
④已知空间的三个向量a,b,c,则对于空间的任意一个向量p总存在实数x,y,z使得p=xa+yb+zc.
其中正确命题的个数是( )
A.0 B.1 C.2 D.3
2、已知向量a=(1,1,0),b=(-1,0,2),且ka+b与2a-b互相垂直,则k的值是( )
A.eq \f(7,5) B.2 C.eq \f(5,3) D.1
3、空间四点A(2,3,6),B(4,3,2),C(0,0,1),D(2,0,2)的位置关系为( )
A. 共线 B. 共面
C. 不共面 D. 无法确定
4、已知向量m是直线l的方向向量,向量n是平面α的法向量,则“m⊥n”是“l∥α”的( )
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分又不必要条件
5、 四棱柱ABCD-A1B1C1D1的底面ABCD是边长为1的菱形,侧棱长为2,且∠C1CB=∠C1CD=∠BCD=60°,则线段A1C的长度是( )
A. eq \r(6) B. eq \f(\r(34),2)
C. 3 D. eq \r(11)
考向一 空间向量的线性运算
例1 、(1) 已知向量a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2),则下列结论中正确的是________;(填序号)
①a∥b,a∥c; ②a∥b,a⊥c;③a∥c,a⊥b.
(2) 已知a=(2,-1,2),b=(-4,2,x),且a∥b,则x=________.
(3)在三棱锥O-ABC中,M,N分别是OA,BC的中点,G是△ABC的重心,用向量 eq \(OA,\s\up6(→)), eq \(OB,\s\up6(→)), eq \(OC,\s\up6(→))表示 eq \(MG,\s\up6(→)), eq \(OG,\s\up6(→)).
变式1、(1)如图所示,在平行六面体ABCD—A1B1C1D1中,M为A1C1与B1D1的交点.若eq \(AB,\s\up6(→))=a,eq \(AD,\s\up6(→))=b,eq \(AA1,\s\up6(→))=c,则向量eq \(BM,\s\up6(→))= (用a,b,c表示).
(2)如图,在四面体O-ABC中,eq \(OA,\s\up6(→))=a,eq \(OB,\s\up6(→))=b,eq \(OC,\s\up6(→))=c,D为BC的中点,E为AD的中点,则eq \(OE,\s\up6(→))= (用a,b,c表示).
变式2、如图所示,M是四面体OABC的棱BC的中点,点N在线段OM上,点P在线段AN上,且AP=3PN,eq \(ON,\s\up6(→))=eq \f(2,3)eq \(OM,\s\up6(→)),设eq \(OA,\s\up6(→))=a,eq \(OB,\s\up6(→))=b,eq \(OC,\s\up6(→))=c,则下列等式成立的是( )
A.eq \(OM,\s\up6(→))=eq \f(1,2)b-eq \f(1,2)c
B.eq \(AN,\s\up6(→))=eq \f(1,3)b+eq \f(1,3)c-a
C.eq \(AP,\s\up6(→))=eq \f(1,4)b-eq \f(1,4)c-eq \f(3,4)a
D.eq \(OP,\s\up6(→))=eq \f(1,4)a+eq \f(1,4)b+eq \f(1,4)c
方法总结:本题考查空间向量基本定理及向量的线性运算. 用不共面的三个向量作为基向量表示某一向量时注意以下三点:(1)结合已知和所求向量观察图形,将已知向量和未知向量转化至三角形或平行四边形中是解题的关键. (2)要正确理解向量加法、减法与数乘运算的几何意义,首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量,我们把这个法则称为向量加法的多边形法则. (3)在立体几何中三角形法则、平行四边形法则仍然成立.
考向二 共线、共面向量定理的应用
例2、已知E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点.
(1) 求证:E,F,G,H四点共面;
(2) 求证:BD∥平面EFGH;
(3) 设M是EG和FH的交点,求证:对空间任一点O,有 eq \(OM,\s\up6(→))= eq \f(1,4)( eq \(OA,\s\up6(→))+ eq \(OB,\s\up6(→))+ eq \(OC,\s\up6(→))+ eq \(OD,\s\up6(→))).
变式1、(多选)下列说法中正确的是( )
A.|a|-|b|=|a+b|是a,b共线的充要条件
B.若eq \(AB,\s\up6(→)),eq \(CD,\s\up6(→))共线,则AB∥CD
C.A,B,C三点不共线,对空间任意一点O,若eq \(OP,\s\up6(→))=eq \f(3,4)eq \(OA,\s\up6(→))+eq \f(1,8)eq \(OB,\s\up6(→))+eq \f(1,8)eq \(OC,\s\up6(→)),则P,A,B,C四点共面
D.若P,A,B,C为空间四点,且有eq \(PA,\s\up6(→))=λeq \(PB,\s\up6(→))+μeq \(PC,\s\up6(→))(eq \(PB,\s\up6(→)),eq \(PC,\s\up6(→))不共线),则λ+μ=1是A,B,C三点共线的充要条件
变式2、已知A,B,C三点不共线,对平面ABC外的任一点O,若点M满足eq \(OM,\s\up6(→))=eq \f(1,3)(eq \(OA,\s\up6(→))+eq \(OB,\s\up6(→))+eq \(OC,\s\up6(→))).
(1)判断eq \(MA,\s\up6(→)),eq \(MB,\s\up6(→)),eq \(MC,\s\up6(→))三个向量是否共面;
(2)判断点M是否在平面ABC内.
变式3、.如图所示,已知斜三棱柱ABC A1B1C1,点M,N分别在AC1和BC上,且满足eq \(AM,\s\up7(―→))=keq \(AC1,\s\up7(―→)),eq \(BN,\s\up7(―→))=keq \(BC,\s\up7(―→))(0≤k≤1).判断向量eq \(MN,\s\up7(―→))是否与向量eq \(AB,\s\up7(―→)),eq \(AA1,\s\up7(―→))共面.
方法总结:证明空间三点P,A,B共线的方法有:①eq \(PA,\s\up6(→))=λeq \(PB,\s\up6(→)) (λ∈R);
②对空间任一点O,eq \(OP,\s\up6(→))=xeq \(OA,\s\up6(→))+yeq \(OB,\s\up6(→)) (x+y=1). 证明空间四点P,M,A,B共面的方法有:①eq \(MP,\s\up6(→))=xeq \(MA,\s\up6(→))+yeq \(MB,\s\up6(→));②对空间任一点O,eq \(OP,\s\up6(→))=xeq \(OM,\s\up6(→))+yeq \(OA,\s\up6(→))+zeq \(OB,\s\up6(→)) (x+y+z=1);③eq \(PM,\s\up6(→))∥eq \(AB,\s\up6(→)) (或eq \(PA,\s\up6(→))∥eq \(MB,\s\up6(→))或eq \(PB,\s\up6(→))∥eq \(AM,\s\up6(→))). 三点共线通常转化为向量共线,四点共面通常转化为向量共面,线面平行可转化为向量共线、共面来证明.
考向三 空间向量数量积的应用
例3、 如图所示,四棱柱ABCD-A1B1C1D1中,底面为平行四边形,以顶点A为端点的三条棱长都为1,且两两夹角为60°.
(1)求AC1的长;
(2)求证:AC1⊥BD;
(3)求BD1与AC夹角的余弦值.
方法总结:空间向量数量积计算的两种方法:(1)基向量法:a·b=|a||b|cs〈a,b〉. (2)坐标法:设a=(x1,y1,z1),b=(x2,y2,z2),则a·b=x1x2+y1y2+z1z2. 利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置. 利用夹角公式,可以求异面直线所成的角,也可以求二面角. 可以通过|a|=eq \r(a2),将向量的长度问题转化为向量数量积的问题求解,体现转化与化归的数学思想
考向四 利用空间向量证明平行或垂直
例4 如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2eq \r(5),AA1=eq \r(7),BB1=2eq \r(7),点E和F分别为BC和A1C的中点.
(1)求证:EF∥平面A1B1BA;
(2)求证:平面AEA1⊥平面BCB1.
变式1、在如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,BB1= eq \r(2),M是线段B1D1的中点.求证:
(1) BM∥平面D1AC;
(2) D1O⊥平面AB1C.
变式2、 如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD= eq \f(\r(2),2)AD,设E,F分别为PC,BD的中点.求证:
(1) EF∥平面PAD;
(2) 平面PAB⊥平面PDC.
1、如图所示,在平行六面体ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.若eq \(AB,\s\up6(→))=a,eq \(AD,\s\up6(→))=b,eq \(AA1,\s\up6(→))=c,则下列向量中与eq \(BM,\s\up6(→))相等的向量是( )
A.-eq \f(1,2)a+eq \f(1,2)b+c B.eq \f(1,2)a+eq \f(1,2)b+c
C.-eq \f(1,2)a-eq \f(1,2)b+c D.eq \f(1,2)a-eq \f(1,2)b+c
2、已知a=(1,0,1),b=(x,1,2),且a·b=3,则向量a与b的夹角为( )
A.eq \f(5π,6) B.eq \f(2π,3) C.eq \f(π,3) D.eq \f(π,6)
3、(多选)已知点P是平行四边形ABCD所在的平面外一点,如果eq \(AB,\s\up7(―→))=(2,-1,-4),eq \(AD,\s\up7(―→))=(4,2,0),eq \(AP,\s\up7(―→))=(-1,2,-1).下列结论正确的有( )
A.AP⊥AB
B.AP⊥AD
C.eq \(AP,\s\up7(―→))是平面ABCD的一个法向量
D.eq \(AP,\s\up7(―→))∥eq \(BD,\s\up7(―→))
4、(多选)已知ABCDA1B1C1D1为正方体,下列说法中正确的是( )
A.(eq \(A1A,\s\up7(―→))+eq \(A1D1,\s\up7(―→))+eq \(A1B1,\s\up7(―→)))2=3(eq \(A1B1,\s\up7(―→)))2
B.eq \(A1C,\s\up7(―→))·(eq \(A1B1,\s\up7(―→))-eq \(A1A,\s\up7(―→)))=0
C.向量eq \(AD1,\s\up7(―→))与向量eq \(A1B,\s\up7(―→))的夹角是60°
D.正方体ABCDA1B1C1D1的体积为|eq \(AB,\s\up7(―→))·eq \(AA1,\s\up7(―→))·eq \(AD,\s\up7(―→))|
5、如图,正方形ABCD与矩形ACEF所在平面互相垂直,AB=eq \r(2),AF=1,M在EF上,且AM∥平面BDE.则M点的坐标为( )
A.(1,1,1) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(2),3),\f(\r(2),3),1))
C.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(2),2),\f(\r(2),2),1)) D.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(2),4),\f(\r(2),4),1))
6、.如图,已知四棱柱ABCD-A1B1C1D1的底面A1B1C1D1为平行四边形,E为棱AB的中点,eq \(AF,\s\up6(→))=eq \f(1,3)eq \(AD,\s\up6(→)),eq \(AG,\s\up6(→))=2eq \(GA1,\s\up6(→)),AC1与平面EFG交于点M,则eq \f(AM,AC1)=________.
7、如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.
(1)求证:BD⊥AA1;
(2)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置,若不存在,请说明理由.
概念
语言描述
共线向量(平行向量)
表示空间向量的有向线段所在的直线互相平行或重合
共面向量
平行于同一个平面的向量
共线向量定理
对空间任意两个向量a,b(b≠0),a∥b⇔存在λ∈R,使a=λb
共面向量定理
若两个向量a,b不共线,则向量p与向量a,b共面⇔存在唯一的有序实数对(x,y),使p=xa+yb
空间向量基本定理及推论
定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在唯一的有序实数组{x,y,z}使得p=xa+yb+zc.
推论:设O,A,B,C是不共面的四点,则对平面ABC内任一点P都存在唯一的三个有序实数x,y,z,使eq \(OP, \s\up7(―→))=xeq \(OA, \s\up7(―→))+yeq \(OB, \s\up7(―→))+zeq \(OC, \s\up7(―→))且x+y+z=1
a=(a1,a2,a3),b=(b1,b2,b3)
向量和
a+b=(a1+b1,a2+b2,a3+b3)
向量差
a-b=(a1-b1,a2-b2,a3-b3)
数量积
a·b=a1b1+a2b2+a3b3
共线
a∥b⇒a1=λb1,a2=λb2,a3=λb3(λ∈R,b≠0)
垂直
a⊥b⇔a1b1+a2b2+a3b3=0
夹角公式
cs〈a,b〉=eq \f(a1b1+a2b2+a3b3,\r(a\\al(2,1)+a\\al(2,2)+a\\al(2,3))\r(b\\al(2,1)+b\\al(2,2)+b\\al(2,3)))
新高考数学一轮复习讲义第7章 §7.6 空间向量的概念与运算(2份打包,原卷版+含解析): 这是一份新高考数学一轮复习讲义第7章 §7.6 空间向量的概念与运算(2份打包,原卷版+含解析),文件包含新高考数学一轮复习讲义第7章§76空间向量的概念与运算原卷版doc、新高考数学一轮复习讲义第7章§76空间向量的概念与运算含解析doc等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
新高考数学一轮复习讲练测第2章第01讲 函数的概念(讲义)(2份打包,原卷版+解析版): 这是一份新高考数学一轮复习讲练测第2章第01讲 函数的概念(讲义)(2份打包,原卷版+解析版),文件包含新高考数学一轮复习讲练测第2章第01讲函数的概念讲义原卷版doc、新高考数学一轮复习讲练测第2章第01讲函数的概念讲义解析版doc等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
2025年高考数学一轮复习(基础版)课时精讲第7章 §7.5 空间向量的概念与运算(2份打包,原卷版+含解析): 这是一份2025年高考数学一轮复习(基础版)课时精讲第7章 §7.5 空间向量的概念与运算(2份打包,原卷版+含解析),文件包含2025年高考数学一轮复习基础版课时精讲第7章§75空间向量的概念与运算原卷版doc、2025年高考数学一轮复习基础版课时精讲第7章§75空间向量的概念与运算含解析doc等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。