|试卷下载
搜索
    上传资料 赚现金
    第56讲 分类加法计数原理与分步乘法计数原理--2025高考一轮单元综合复习与测试卷
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      第56讲 分类加法计数原理与分步乘法计数原理(原卷版).docx
    • 解析
      第56讲 分类加法计数原理与分步乘法计数原理(解析版) .docx
    第56讲 分类加法计数原理与分步乘法计数原理--2025高考一轮单元综合复习与测试卷01
    第56讲 分类加法计数原理与分步乘法计数原理--2025高考一轮单元综合复习与测试卷02
    第56讲 分类加法计数原理与分步乘法计数原理--2025高考一轮单元综合复习与测试卷01
    第56讲 分类加法计数原理与分步乘法计数原理--2025高考一轮单元综合复习与测试卷02
    第56讲 分类加法计数原理与分步乘法计数原理--2025高考一轮单元综合复习与测试卷03
    还剩2页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第56讲 分类加法计数原理与分步乘法计数原理--2025高考一轮单元综合复习与测试卷

    展开
    这是一份第56讲 分类加法计数原理与分步乘法计数原理--2025高考一轮单元综合复习与测试卷,文件包含第56讲分类加法计数原理与分步乘法计数原理原卷版docx、第56讲分类加法计数原理与分步乘法计数原理解析版docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。


    两个计数原理
    (1)分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N= m+n种不同的方法.
    (2)分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.
    常用结论
    两个计数原理的区别与联系
    考点1 分类加法计数原理
    [名师点睛]
    分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词、关键元素和关键位置.
    (1)根据题目特点恰当选择一个分类标准.
    (2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法才是不同的方法,不能重复.
    (3)分类时除了不能交叉重复外,还不能有遗漏.
    [典例]
    1.从甲地到乙地有三种方式可以到达.每天有8班汽车、2班火车和2班飞机.一天一人从甲地去乙地,共有________种不同的方法.
    答案 12
    解析 分三类:一类是乘汽车,有8种方法;一类是乘火车,有2种方法;一类是乘飞机,有2种方法,由分类加法计数原理知,共有8+2+2=12种方法.
    2.如果把个位数是1,且恰有3个数字相同的四位数叫作“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个(用数字作答).
    答案 12
    解析 组成的数字有三个1,三个2,三个3,三个4,4种情况.当有三个1时:2111,3111,4111,1211,1311,1411,1121,1131,1141,有9个;当有三个2,三个3或三个4时:2221,3331,4441,有3个,根据分类加法计数原理可知,共有12个结果.
    3.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为________.
    答案 13
    解析 当a=0时,b的值可以是-1,0,1,2,故(a,b)的个数为4;
    当a≠0时,要使方程ax2+2x+b=0有实数解,需使Δ=4-4ab≥0,即ab≤1.
    若a=-1,则b的值可以是-1,0,1,2,(a,b)的个数为4;
    若a=1,则b的值可以是-1,0,1,(a,b)的个数为3;
    若a=2,则b的值可以是-1,0,(a,b)的个数为2.
    由分类加法计数原理可知,(a,b)的个数为4+4+3+2=13.
    [举一反三]
    1.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )
    A.4种 B.10种 C.18种 D.20种
    答案 B
    解析 依题意得,可能剩余一本画册或一本集邮册两种情况.第一类,剩余的是一本画册,此时满足题意的赠送方法共有4种;第二类,剩余的是一本集邮册,此时满足题意的赠送方法共有Ceq \\al(2,4)=6(种).因此,满足题意的赠送方法共有4+6=10(种).
    2.如图所示,某景观湖内有四个人工小岛,为方便游客登岛观赏美景,现计划设计三座景观桥连通四个小岛,每座桥只能连通两个小岛,且每个小岛最多有两座桥连接,则设计方案的种数最多是( )
    A.8 B.12 C.16 D.24
    答案 B
    解析 四个人工小岛分别记为A,B,C,D,对A分有一座桥相连和两座桥相连两种情况,用“-”表示桥.
    ①当A只有一座桥相连时,有A-B-C-D,A-B-D-C,A-C-B-D,A-C-D-B,A-D-B-C,A-D-C-B,共6种方法;
    ②当A有两座桥相连时,有C-A-B-D,D-A-B-C,D-A-C-B,B-A-C-D,B-A-D-C,C-A-D-B,共6种方法.故设计方案最多有6+6=12(种).
    考点2 分步乘法计数原理
    [名师点睛]
    1.利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.
    2.分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.
    [典例]
    有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法(六名同学不一定都能参加)?
    (1)每人只参加一项,每项人数不限;
    (2)每项限报一人,且每人至多参加一项;
    (3)每项限报一人,但每人参加的项目不限.
    解 (1)每人都可以从三个竞赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得不同的报名方法共有36=729(种).
    (2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).
    (3)每人参加的项目不限,因此每一个项目都可以从这六名同学中选出一人参赛,根据分步乘法计数原理,可得不同的报名方法共有63=216(种).
    [举一反三]
    1.某学校的3个班级将要去甲、乙、丙、丁4个工厂参观学习,要求每个班只能去1个工厂参观学习,且甲工厂必须有班级参观学习,则不同的参观方案有( )
    A.16种 B.25种
    C.37种 D.48种
    答案 C
    解析 每个班级都可以从这4个工厂中选1个参观学习,各有4种选择,根据分步乘法计数原理,共有43=64(种)参观方案,若甲工厂没有班级参观学习,此时每个班级都可以从其余3个工厂中选1个参观学习,各有3种选择,共有33=27(种)参观方案,所以甲工厂必须有班级参观学习,不同的参观方案有64-27=37(种).
    2.(多选)有4位同学报名参加三个不同的社团,则下列说法正确的是( )
    A.每位同学限报其中一个社团,则不同的报名方法共有34种
    B.每位同学限报其中一个社团,则不同的报名方法共有43种
    C.每个社团限报一个人,则不同的报名方法共有24种
    D.每个社团限报一个人,则不同的报名方法共有33种
    答案 AC
    解析 对于A,第1个同学有3种报法,第2个同学有3种报法,后面的2个同学也有3种报法,根据分步乘法计数原理知共有34种结果,A正确,B错误;对于C,每个社团限报一个人,则第1个社团有4种选择,第2个社团有3种选择,第3个社团有2种选择,根据分步乘法计数原理知共有4×3×2=24(种)结果,C正确,D错误.
    3.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答).
    答案 336
    解析 甲有7种站法,乙有7种站法,丙有7种站法,故不考虑限制共有7×7×7=343(种)站法,其中三个人站在同一级台阶上有7种站法,故符合本题要求的不同站法有343-7=336(种).
    4.某次活动中,有30个人排成6行5列,现要从中选出3人进行礼仪表演,要求这3人中的任意2人不同行也不同列,则不同的选法种数为 .(用数字作答)
    答案 7 200
    解析 最先选出的1个人有30种方法,则这个人所在的行和列不能再选人,还剩一个5行4列的队形,可知选第2个人有20种方法,则该人所在的行和列也不能再选人,还剩一个4行3列的队形,可知选第3个人有12种方法,根据分步乘法计数原理,总的选法种数是30×20×12=7 200.
    考点3 两个计数原理的综合应用
    [名师点睛]
    1.在综合应用两个原理解决问题时应注意:
    (1)一般是先分类再分步.在分步时可能又用到分类加法计数原理.(2)对于较复杂的两个原理综合应用的问题,可恰当地列出示意图或列出表格,使问题形象化、直观化.
    2.解决涂色问题,可按颜色的种数分类,也可按不同的区域分步完成.
    [典例]
    角度1 与数字有关的问题
    例 用0,1,2,3,4,5,6这7个数字可以组成________个无重复数字的四位偶数(用数字作答).
    答案 420
    解析 要完成的“一件事”为“组成无重复数字的四位偶数”,所以千位数字不能为0,个位数字必须是偶数,且组成的四位数中四个数字不重复,因此应先分类,再分步.
    第1类,当千位数字为奇数,即取1,3,5中的任意一个时,个位数字可取0,2,4,6中的任意一个,百位数字不能取与这两个数字重复的数字,十位数字不能取与这三个数字重复的数字.
    根据分步乘法计数原理,有3×4×5×4=240(种)取法.
    第2类,当千位数字为偶数,即取2,4,6中的任意一个时,个位数字可以取除首位数字的任意一个偶数数字,百位数字不能取与这两个数字重复的数字,十位数字不能取与这三个数字重复的数字.
    根据分步乘法计数原理,有3×3×5×4=180(种)取法.
    根据分类加法计数原理,共可以组成240+180=420(个)无重复数字的四位偶数.
    角度2 与几何有关的问题
    例 如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( )
    A.48 B.18 C.24 D.36
    答案 D
    解析 在正方体中,每一个表面有四条棱与之垂直,六个表面,共构成24个“正交线面对”;而正方体的六个对角面中,每个对角面有两条面对角线与之垂直,共构成12个“正交线面对”,所以共有36个“正交线面对”.
    角度3 涂色问题
    例 如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法种数.
    解 法一 按所用颜色种数分类.
    第一类:5种颜色全用,共有Aeq \\al(5,5)种不同的方法;
    第二类:只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×Aeq \\al(4,5)种不同的方法;
    第三类:只用3种颜色,则A与C,B与D必定同色,共有Aeq \\al(3,5)种不同的方法.
    由分类加法计数原理,得不同的染色方法种数为Aeq \\al(5,5)+2×Aeq \\al(4,5)+Aeq \\al(3,5)=420(种).
    法二 以S,A,B,C,D顺序分步染色.
    第一步:S点染色,有5种方法;
    第二步:A点染色,与S在同一条棱上,有4种方法;
    第三步:B点染色,与S,A分别在同一条棱上,有3种方法;
    第四步:C点染色,也有3种方法,但考虑到D点与S,A,C相邻,需要针对A与C是否同色进行分类:当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S,B也不同色,所以C点有2种染色方法,D点有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).
    [举一反三]
    1.(2022·杭州调研)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )
    A.243 B.252 C.261 D.279
    答案 B
    解析 0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),故有重复数字的三位数有900-648=252(个).
    2.如图所示,积木拼盘由A,B,C,D,E五块积木组成,若每块积木都要涂一种颜色,且为了体现拼盘的特色,相邻的区域需涂不同的颜色(如:A与B为相邻区域,A与D为不相邻区域),现有五种不同的颜色可供挑选,则不同的涂色方法的种数是( )
    A.780 B.840 C.900 D.960
    答案 D
    解析 先涂A,则A有Ceq \\al(1,5)=5(种)涂法,再涂B,因为B与A相邻,所以B的颜色只要与A不同即可,有Ceq \\al(1,4)=4(种)涂法,同理C有Ceq \\al(1,3)=3(种)涂法,D有Ceq \\al(1,4)=4(种)涂法,E有Ceq \\al(1,4)=4(种)涂法,
    由分步乘法计数原理,可知不同的涂色方法种数为5×4×3×4×4=960.
    分类加法计数原理
    分步乘法计数原理
    相同点
    用来计算完成一件事的方法种数
    不同点
    分类、相加
    分步、相乘
    每类方案中的每一种方法都能独立完成这件事
    每步依次完成才算完成这件事情(每步中的每一种方法不能独立完成这件事)
    注意点
    类类独立,不重不漏
    步步相依,缺一不可
    相关试卷

    2025高考数学一轮复习-10.1-分类加法计数原理与分步乘法计数原理-专项训练【含解析】: 这是一份2025高考数学一轮复习-10.1-分类加法计数原理与分步乘法计数原理-专项训练【含解析】,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025高考数学一轮复习-10.1-分类加法计数原理与分步乘法计数原理-专项训练【含解析】: 这是一份2025高考数学一轮复习-10.1-分类加法计数原理与分步乘法计数原理-专项训练【含解析】,共5页。

    高中数学高考第55讲 分类加法计数原理与分步乘法计数原理(讲)(学生版): 这是一份高中数学高考第55讲 分类加法计数原理与分步乘法计数原理(讲)(学生版),共5页。试卷主要包含了分类加法计数原理,分步乘法计数原理等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第56讲 分类加法计数原理与分步乘法计数原理--2025高考一轮单元综合复习与测试卷
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map