- 2024年江苏省苏州市中考数学试卷 试卷 0 次下载
- 2024年河南省中考数学试卷 试卷 0 次下载
- 2024年湖北省中考数学试卷 试卷 1 次下载
- 2024年湖北省武汉市中考数学试卷 试卷 0 次下载
- 2024年湖南省中考数学试卷 试卷 0 次下载
2024年浙江省中考数学试卷
展开1.(3分)以下四个城市中某天中午12时气温最低的城市是( )
A.北京B.济南C.太原D.郑州
2.(3分)5个相同正方体搭成的几何体主视图为( )
A.B.C.D.
3.(3分)2024年浙江经济一季度GDP为201370000万元,其中201370000用科学记数法表示为( )
A.20.137×109B.0.20137×108
C.2.0137×109D.2.0137×108
4.(3分)下列式子运算正确的是( )
A.x3+x2=x5B.x3•x2=x6C.(x3)2=x9D.x6÷x2=x4
5.(3分)菜鸡班有5位学生参加志愿服务次数为:7,7,8,10,13.则这5位学生志愿服务次数的中位数为( )
A.7B.8C.9D.10
6.(3分)如图,在平面直角坐标系中,△ABC与△A′B′C′是位似图形,位似中心为点O.若点A(﹣3,1)的对应点为A′(﹣6,2),则点B(﹣2,4)的对应点B′的坐标为( )
A.(﹣4,8)B.(8,﹣4)C.(﹣8,4)D.(4,﹣8)
7.(3分)不等式组的解集在数轴上表示为( )
A.
B.
C.
D.
8.(3分)如图,正方形ABCD由四个全等的直角三角形(△ABE,△BCF,△CDG,△DAH)和中间一个小正方形EFGH组成,连接DE.若AE=4,BE=3,则DE=( )
A.5B.C.D.4
9.(3分)反比例函数的图象上有P(t,y1),Q(t+4,y2)两点.下列正确的选项是( )
A.当t<﹣4时,y2<y1<0B.当﹣4<t<0时,y2<y1<0
C.当﹣4<t<0时,0<y1<y2D.当t>0时,0<y1<y2
10.(3分)如图,在▱ABCD中,AC,BD相交于点O,AC=2,.过点A作AE⊥BC的垂线交BC于点E,记BE长为x,BC长为y.当x,y的值发生变化时,下列代数式的值不变的是( )
A.x+yB.x﹣yC.xyD.x2+y2
二、填空题(每题3分)
11.(3分)因式分解:a2﹣7a= .
12.(3分)若,则x= .
13.(3分)如图,AB是⊙O的直径,AC与⊙O相切,A为切点,连接BC.已知∠ACB=50°,则∠B的度数为 .
14.(3分)有8张卡片,上面分别写着数1,2,3,4,5,6,7,8.从中随机抽取1张,该卡片上的数是4的整数倍的概率是 .
15.(3分)如图,D,E分别是△ABC边AB,AC的中点,连接BE,DE.若∠AED=∠BEC,DE=2,则BE的长为 .
16.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,.线段AB与A′B′关于过点O的直线l对称,点B的对应点B′在线段OC上,A′B′交CD于点E,则△B′CE与四边形OB′ED的面积比为 .
三、解答题(17-21每题8分,22、23每题10分,24题12分)
17.(8分)计算:.
18.(8分)解方程组:.
19.(8分)如图,在△ABC中,AD⊥BC,AE是BC边上的中线,AB=10,AD=6,tan∠ACB=1.
(1)求BC的长;
(2)求sin∠DAE的值.
20.(8分)某校开展科学活动.为了解学生对活动项目的喜爱情况,随机抽取部分学生进行问卷调查.调查问卷和统计结果描述如下:
根据以上信息.解答下列问题:
(1)本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”有多少人?
(2)菜鸡学校共有1200名学生,根据统计信息,估计该校最喜爱“科普讲座”的学生人数.
21.(8分)尺规作图问题:
如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.
小明:如图2.以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.
小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.
小明:小丽,你的作法有问题.
小丽:哦…我明白了!
(1)证明AF∥CE;
(2)指出小丽作法中存在的问题.
22.(10分)小明和小丽在跑步机上慢跑锻炼.小明先跑,10分钟后小丽才开始跑,小丽跑步时中间休息了两次.跑步机上C档比B档快40米/分、B档比A档快40米/分.小明与小丽的跑步相关信息如表所示,跑步累计里程s(米)与小明跑步时间t(分)的函数关系如图所示.
(1)求A,B,C各档速度(单位:米/分);
(2)求小丽两次休息时间的总和(单位:分);
(3)小丽第二次休息后,在a分钟时两人跑步累计里程相等,求a的值.
23.(10分)已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(﹣2,5),对称轴为直线.
(1)求二次函数的表达式;
(1)若点B(1,7)向上平移2个单位长度,向左平移m(m>0)个单位长度后,恰好落在y=x2+bx+c的图象上,求m的值;
(3)当﹣2≤x≤n时,二次函数y=x2+bx+c的最大值与最小值的差为,求n的取值范围.
24.(12分)如图,在圆内接四边形ABCD中,AD<AC,∠ADC<∠BAD,延长AD至点E,使AE=AC,延长BA至点F,连结EF,使∠AFE=∠ADC.
(1)若∠AFE=60°,CD为直径,求∠ABD的度数.
(2)求证:①EF∥BC;
②EF=BD.
2024年浙江省中考数学试卷
参考答案与试题解析
一、选择题(每题3分)
1.(3分)以下四个城市中某天中午12时气温最低的城市是( )
A.北京B.济南C.太原D.郑州
【答案】C
【解答】解:|﹣1|=1,|﹣2|=2,
∵1<2,
∴﹣1>﹣2;
∵3℃>0℃>﹣1℃>﹣2℃,
∴所给的四个城市中某天中午12时气温最低的城市是太原.
故选:C.
2.(3分)5个相同正方体搭成的几何体主视图为( )
A.B.C.D.
【答案】B
【解答】解:从正面看,共有三列,从左到右小正方形的个数分别为2、2、1.
故选:B.
3.(3分)2024年浙江经济一季度GDP为201370000万元,其中201370000用科学记数法表示为( )
A.20.137×109B.0.20137×108
C.2.0137×109D.2.0137×108
【答案】D
【解答】解:201370000=2.0137×108,
故选:D.
4.(3分)下列式子运算正确的是( )
A.x3+x2=x5B.x3•x2=x6C.(x3)2=x9D.x6÷x2=x4
【答案】D
【解答】解:A.x3+x2不能合并同类项,故本选项不符合题意;
B.x3•x2=x5,故本选项不符合题意;
C.(x3)2=x6,故本选项不符合题意;
D.x6÷x2=x4,故本选项符合题意;
故选:D.
5.(3分)菜鸡班有5位学生参加志愿服务次数为:7,7,8,10,13.则这5位学生志愿服务次数的中位数为( )
A.7B.8C.9D.10
【答案】B
【解答】解:菜鸡班有5位学生参加志愿服务次数为:7,7,8,10,13,从小到大排列排在中间的数是8,
所以这5位学生志愿服务次数的中位数为8.
故选:B.
6.(3分)如图,在平面直角坐标系中,△ABC与△A′B′C′是位似图形,位似中心为点O.若点A(﹣3,1)的对应点为A′(﹣6,2),则点B(﹣2,4)的对应点B′的坐标为( )
A.(﹣4,8)B.(8,﹣4)C.(﹣8,4)D.(4,﹣8)
【答案】A
【解答】解:∵△ABC与△A′B′C′是位似图形,位似中心为点O,点A(﹣3,1)的对应点为A′(﹣6,2),
∴△ABC与△A′B′C′的相似比为1:2,
∵点B的坐标为(﹣2,4),
∴点B的对应点B′的坐标为(﹣2×2,4×2),即(﹣4,8),
故选:A.
7.(3分)不等式组的解集在数轴上表示为( )
A.
B.
C.
D.
【答案】A
【解答】解:,
解不等式①得:x≥1,
解不等式②得:x<4,
∴原不等式组的解集为:1≤x<4,
∴该不等式组的解集在数轴上表示如图所示:
故选:A.
8.(3分)如图,正方形ABCD由四个全等的直角三角形(△ABE,△BCF,△CDG,△DAH)和中间一个小正方形EFGH组成,连接DE.若AE=4,BE=3,则DE=( )
A.5B.C.D.4
【答案】C
【解答】解:∵Rt△DAH≌Rt△ABE,
∴DH=AE=4,AH=BE=3,
∴EH=AE﹣AH=4﹣3=1,
∵四边形形EFGH是正方形,
∴∠DHE=90°,
∴DE,
故选:C.
9.(3分)反比例函数的图象上有P(t,y1),Q(t+4,y2)两点.下列正确的选项是( )
A.当t<﹣4时,y2<y1<0B.当﹣4<t<0时,y2<y1<0
C.当﹣4<t<0时,0<y1<y2D.当t>0时,0<y1<y2
【答案】A
【解答】解:∵反比例函数中,k=4>0,
∴此函数图象的两个分支分别位于第一、三象限,在每一象限内y随x的增大而减小,
A、当t<﹣4时,t+4<0,
∵t<t+4,
∴y2<y1<0,正确,符合题意;
B、当﹣4<t<0时,点P(t,y1)在第三象限,点Q(t+4,y2)在第一象限,
∴y1<0,y2>0,
∴y1<0<y2,原结论错误,不符合题意;
C、由B知,当﹣4<t<0时,y1<0<y2,原结论错误,不符合题意;
D、当t>0时,t+4>0,
∴P(t,y1),Q(t+4,y2)在第一象限,
∵t<t+4,
∴y1>y2>0,原结论错误,不符合题意.
故选:A.
10.(3分)如图,在▱ABCD中,AC,BD相交于点O,AC=2,.过点A作AE⊥BC的垂线交BC于点E,记BE长为x,BC长为y.当x,y的值发生变化时,下列代数式的值不变的是( )
A.x+yB.x﹣yC.xyD.x2+y2
【答案】C
【解答】解:过D作DH⊥BC,交BC延长线于H,
∵四边形ABCD是平行四边形,
∴AB=DC,AD∥BC,
∵AE⊥BC,DH⊥BC,
∴AE=DH,
∴Rt△DCH≌Rt△ABE(HL),
∴CH=BE=x,
∵BC=y,
∴EC=BC﹣BE=y﹣x,BH=BC+CH=y+x,
∵AE2=AC2﹣EC2,DH2=BD2﹣BH2,
∴22﹣(y﹣x)2(y+x)2,
∴xy=2.
故选:C.
二、填空题(每题3分)
11.(3分)因式分解:a2﹣7a= a(a﹣7) .
【答案】a(a﹣7).
【解答】解:a2﹣7a=a(a﹣7).
故答案为:a(a﹣7).
12.(3分)若,则x= 3 .
【答案】3.
【解答】解:两边都乘以(x﹣1),得
2=x﹣1,
解得x=3,
经检验x=3是原方程的解,
所以原方程的解为x=3.
故答案为:3.
13.(3分)如图,AB是⊙O的直径,AC与⊙O相切,A为切点,连接BC.已知∠ACB=50°,则∠B的度数为 40° .
【答案】40°.
【解答】解:∵AB是⊙O的直径,AC与⊙O相切,A为切点,
∴BA⊥AC,
∴∠BAC=90°,
∵∠ACB=50°,
∴∠B=90°﹣50°=40°.
故答案为:40°.
14.(3分)有8张卡片,上面分别写着数1,2,3,4,5,6,7,8.从中随机抽取1张,该卡片上的数是4的整数倍的概率是 .
【答案】.
【解答】解:∵有8张卡片,上面分别写着数1,2,3,4,5,6,7,8,其中该卡片上的数是4的整数倍的数是4,8,
∴该卡片上的数是4的整数倍的概率是,
故答案为:.
15.(3分)如图,D,E分别是△ABC边AB,AC的中点,连接BE,DE.若∠AED=∠BEC,DE=2,则BE的长为 4 .
【答案】4.
【解答】解:∵D,E分别是△ABC边AB,AC的中点,
∴BC=2DE=2×2=4,DE∥BC,
∴∠AED=∠C,
∵∠AED=∠BEC,
∴∠BEC=∠C,
∴BE=BC=4,
故答案为:4.
16.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,.线段AB与A′B′关于过点O的直线l对称,点B的对应点B′在线段OC上,A′B′交CD于点E,则△B′CE与四边形OB′ED的面积比为 .
【答案】.
【解答】解:如图连接OE、A'D,
∵AB关于过O的直线对称,
∴A'在BD延长线上,
∵,
∴设AC=10k,BD=6k,
在菱形ABCD中,OA=OC=5k,CB=OD=3k,
∵AB与A'B'关于过O的直线对称,
∴OA=OA'=5k,OB=OB'=3k,∠A'=∠DAC=∠DCA,
∴A'D=B'C=2k,
∵∠A'ED=∠B'CE,
∴△A'ED≌△CEB'(AAS),
∴DE=B'E,
∵OE=OE,OD=OB',
∴△DOE≌△B'OE(SSS),
∴S△DOE=S△B′OE,
∵,
∴.
故答案为:.
三、解答题(17-21每题8分,22、23每题10分,24题12分)
17.(8分)计算:.
【答案】7.
【解答】解:原式=4﹣2+5
=7.
18.(8分)解方程组:.
【答案】.
【解答】解:,
①×3+②得:10x=5,
解得:x,
把x代入①得:2y=5,
解得:y=﹣4,
所以方程组的解是.
19.(8分)如图,在△ABC中,AD⊥BC,AE是BC边上的中线,AB=10,AD=6,tan∠ACB=1.
(1)求BC的长;
(2)求sin∠DAE的值.
【答案】(1)14;
(2).
【解答】解:(1)∵AD⊥BC,AB=10,AD=6,
∴BD8;
∵tan∠ACB=1,
∴CD=AD=6,
∴BC=BD+CD=8+6=14;
(2)∵AE是BC边上的中线,
∴CE7,
∴DE=CE﹣CD=7﹣6=1,
∵AD⊥BC,
∴,
∴sin∠DAE.
20.(8分)某校开展科学活动.为了解学生对活动项目的喜爱情况,随机抽取部分学生进行问卷调查.调查问卷和统计结果描述如下:
根据以上信息.解答下列问题:
(1)本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”有多少人?
(2)菜鸡学校共有1200名学生,根据统计信息,估计该校最喜爱“科普讲座”的学生人数.
【答案】(1)32人;
(2)324人.
【解答】解:(1)80×40%=32(人),
答:本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”有32人;
(2)1200324(人),
答:估计该校最喜爱“科普讲座”的学生人数大约有324人.
21.(8分)尺规作图问题:
如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.
小明:如图2.以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.
小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.
小明:小丽,你的作法有问题.
小丽:哦…我明白了!
(1)证明AF∥CE;
(2)指出小丽作法中存在的问题.
【答案】(1)证明见解答过程;
(2)以A为圆心,EC为半径画弧,交BC于点F,此时可能会有两个交点,只有其中之一符合题意.
【解答】(1)证明:根据小明的作法知,CF=AE,
∵四边形ABCD是平行四边形,
∴AD∥BC,
又∵CF=AE,
∴四边形AFCE是平行四边形,
∴AF∥CE;
(2)解:以A为圆心,EC为半径画弧,交BC于点F,此时可能会有两个交点,只有其中之一符合题意.
故小丽的作法有问题.
22.(10分)小明和小丽在跑步机上慢跑锻炼.小明先跑,10分钟后小丽才开始跑,小丽跑步时中间休息了两次.跑步机上C档比B档快40米/分、B档比A档快40米/分.小明与小丽的跑步相关信息如表所示,跑步累计里程s(米)与小明跑步时间t(分)的函数关系如图所示.
(1)求A,B,C各档速度(单位:米/分);
(2)求小丽两次休息时间的总和(单位:分);
(3)小丽第二次休息后,在a分钟时两人跑步累计里程相等,求a的值.
【答案】(1)A,B,C各档速度80米/分、120米/分、160米/分;(2)小丽两次休息时间的总和为5分钟;(3)a=42.5.
【解答】解:(1)由题意可知,A档速度为4000÷50=80(米/分),
则B档速度为80+40=120(米/分),
C档速度为120+40=160(米/分),
答:A,B,C各档速度80米/分、120米/分、160米/分.
(2)小丽第一段跑步时间为1800÷120=15(分),
小丽第二段跑步时间为(3000﹣1800)÷120=10(分),
小丽第三段跑步时间为(4600﹣3000)÷160=10(分),
则小丽两次休息时间的总和为50﹣10﹣15﹣10﹣10=5(分),
答:小丽两次休息时间的总和为5分钟.
(3)∵小丽第二次休息后,在a分钟时两人跑步累计里程相等,
∴此时小丽在跑第三段,所跑时间为a﹣10﹣15﹣10﹣5=a﹣40(分),
∴80a=3000+160(a﹣40),
∴a=42.5.
23.(10分)已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(﹣2,5),对称轴为直线.
(1)求二次函数的表达式;
(1)若点B(1,7)向上平移2个单位长度,向左平移m(m>0)个单位长度后,恰好落在y=x2+bx+c的图象上,求m的值;
(3)当﹣2≤x≤n时,二次函数y=x2+bx+c的最大值与最小值的差为,求n的取值范围.
【答案】(1)y=x2+x+3;(2)m=4;(3)..
【解答】解:(1)由题意,∵二次函数为y=x2+bx+c,
∴抛物线为直线x.
∴b=1.
∴抛物线为y=x2+x+c.
又图象经过点A(﹣2,5),
∴4﹣2+c=5.
∴c=3.
∴抛物线为y=x2+x+3.
(2)由题意,∵点B(1,7)向上平移2个单位长度,向左平移m个单位长度(m>0),
∴平移后的点为(1﹣m,9).
又(1﹣m,9)在y=x2+x+3,
∴9=(1﹣m)2+(1﹣m)+3.
∴m=4或m=﹣1(舍去).
∴m=4.
(3)由题意,当 时,
∴最大值与最小值的差为.
∴,不符合题意,舍去.
当 时,
∴最大值与最小值的差为,符合题意.
当n>1时,最大值与最小值的差为 ,解得 n1=1 或 n2=﹣2,不符合题意.
综上所述,n的取值范围为 .
24.(12分)如图,在圆内接四边形ABCD中,AD<AC,∠ADC<∠BAD,延长AD至点E,使AE=AC,延长BA至点F,连结EF,使∠AFE=∠ADC.
(1)若∠AFE=60°,CD为直径,求∠ABD的度数.
(2)求证:①EF∥BC;
②EF=BD.
【答案】(1)30°;
(2)①详见解答;②详见解答.
【解答】(1)解:∵CD为直径,
∴∠CAD=90°,
∵∠AFE=∠ADC=60°,
∴∠ACD=90°﹣60°=30°,
∴∠ABD=∠ACD=30°;
(2)证明:①如图,延长AB,
∵四边形ABCD是圆内接四边形,
∴∠CBM=∠ADC,
又∵∠AFE=∠ADC,
∴∠AFE=∠CBM,
∴EF∥BC;
②过点D作DG∥BC交⊙O于点G,则DG∥BC∥EF,
∵DG∥BC,
∴,
∴BD=CG,
∵四边形BCGD是圆内接四边形,
∴∠GDE=∠ACG,
∵∠AFE=∠ADC,∠ADC=∠AGC,
∴∠AFE=∠AGC,
∵AE=AC,
∴△AEF≌△ACG(AAS),
∴EF=CG,
∴EF=BD.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2024/7/1 18:25:34;用户:大胖001;邮箱:15981837291;学号:22699691北京
济南
太原
郑州
0℃
﹣1℃
﹣2℃
3℃
科学活动喜爱项目调查问卷
以下问题均为单选题,请根据实际情况填写.
问题1:在以下四类科学“嘉年华”项目中,你最喜爱的是
(A)科普讲座
(B)科幻电影
(C)AI应用
(D)科学魔术
如果问题1选择C.请继续回答问题2.
问题2:你更关注的AI应用是
(E)辅助学习
(F)虚拟体验
(G)智能生活
(H)其他
时间
里程分段
速度档
跑步里程
小明
16:00~16:50
不分段
A档
4000米
小丽
16:10~16:50
第一段
B档
1800米
第一次休息
第二段
B档
1200米
第二次休息
第三段
C档
1600米
北京
济南
太原
郑州
0℃
﹣1℃
﹣2℃
3℃
科学活动喜爱项目调查问卷
以下问题均为单选题,请根据实际情况填写.
问题1:在以下四类科学“嘉年华”项目中,你最喜爱的是 A
(A)科普讲座
(B)科幻电影
(C)AI应用
(D)科学魔术
如果问题1选择C.请继续回答问题2.
问题2:你更关注的AI应用是 E
(E)辅助学习
(F)虚拟体验
(G)智能生活
(H)其他
时间
里程分段
速度档
跑步里程
小明
16:00~16:50
不分段
A档
4000米
小丽
16:10~16:50
第一段
B档
1800米
第一次休息
第二段
B档
1200米
第二次休息
第三段
C档
1600米
浙江省2024届中考数学试卷(含答案): 这是一份浙江省2024届中考数学试卷(含答案),共16页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2024年浙江省中考数学试卷附答案: 这是一份2024年浙江省中考数学试卷附答案,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年浙江省中考数学试卷: 这是一份2024年浙江省中考数学试卷,共7页。