[数学]吉林省部分名校2023-2024学年高二下学期期末联合考试数学试题
展开
这是一份[数学]吉林省部分名校2023-2024学年高二下学期期末联合考试数学试题,共3页。试卷主要包含了填写答题卡的内容用2B铅笔填写,提前 xx 分钟收取答题卡等内容,欢迎下载使用。
考试时间:分钟 满分:分
姓名:____________ 班级:____________ 学号:____________
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.(共8题;共40分)
1. 一质点沿直线运动,位移(单位:米)与时间(单位:秒)之间的关系为 , 则质点在秒时的瞬时速度为( )
A . 1米/秒 B . 2米/秒 C . 3米/秒 D . 4米/秒
2. 的展开式中的常数项为( )
A . 12 B . 8 C . -12 D . -8
3. 某莲藕种植塘每年的固定成本是3万元,每年最大规模的种植量是15万斤,每种植1斤莲藕,成本增加1元,销售额(单位:万元)与莲藕种植量(单位:万斤)满足 , 要使销售利润最大,每年需种植莲藕( )
A . 12万斤 B . 10万斤 C . 8万斤 D . 6万斤
4. 某班有4名同学报名参加校运会的六个比赛项目,若每项至多报一人,且每人只报一项,则报名方法的种数为( )
A . 240 B . 360 C . 480 D . 640
5. 函数的导函数的部分图象如图所示,则的图象可能是( )
A . B . C . D .
6. 高尔顿钉板是英国生物学家高尔顿设计的,如图,每一个黑点表示钉在板上的一颗钉子,上一层的每个钉子的水平位置恰好位于下一层的两颗钉子的正中间,从入口处放进一个直径略小于两颗钉子之间距离的白色圆玻璃球,白色圆玻璃球向下降落的过程中,首先碰到最上面的钉子,碰到钉子后皆以二分之一的概率向左或向右滚下,于是又碰到下一层钉子,如此继续下去,直到滚到底板的一个格子内为止.现从入口处放进一个白色圆玻璃球,记白色圆玻璃球落入格子的编号为 , 则随机变量的期望与方差分别为( )
A . B . C . D .
7. 2024年第二届贵州“村超”总决赛阶段的比赛正式拉开帷幕.某校足球社的6名学生准备分成三组前往村超球队所在的平地村、口寨村、忠诚村3个村寨进行调研,每个组至多3名学生,且学生甲和学生乙不在同一组,则不同的安排方法种数为( )
A . 354 B . 368 C . 336 D . 420
8. 已知 , 则( )
A . B . C . D .
二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.(共3题;共18分)
9. 已知 , 且 , 则( )
A . B . C . D .
10. 不透明袋子中装有5个编号为的小球,这5个小球除编号外其余完全相同,从袋子中随机取出3个小球,记取出的3个小球的编号之和为 , 编号之积为 , 则( )
A . 是3的倍数的概率为0.4 B . 是3的倍数的概率为0.6 C . 是3的倍数的概率为0.4 D . 是3的倍数的概率为0.6
11. 已知函数 , 若对任意的恒成立,则正实数的取值可以为( )
A . B . C . D .
三、填空题:本题共3小题,每小题5分,共15分.把答案填在答题卡中的横线上.(共3题;共15分)
12. 已知随机变量 , 则____________________,____________________.
13. 在数轴上,一质点从原点0出发,每次等可能地向左或向右平移一个单位长度,则经过11次平移后,该质点最终到达3的位置,则不同的平移方法共有____________________种.
14. 已知函数的定义域为 , 其导函数是.若恒成立,则关于的不等式的解集为____________________.
第Ⅱ卷 主观题
第Ⅱ卷的注释
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.(共5题;共77分)
15. 从6名男生和5名女生中选出4人去参加某活动的志愿者.
(1) 若4人中必须既有男生又有女生,则有多少种选法?
(2) 先选出4人,再将这4人分配到两个不同的活动场地(每个场地均要有人去,1人只能去一个场地),则有多少种安排方法?
(3) 若男、女生各需要2人,4人选出后安排与2名组织者合影留念(站一排),2名女生要求相邻,则有多少种不同的合影方法?
16. 已知函数.
(1) 若曲线在点处的切线方程为 , 求和的值;
(2) 讨论的单调性.
17. 在某次人工智能知识问答中,考生甲需要依次回答道试题.若甲答对某道试题,则下一道试题也答对的概率为 , 若甲答错某道试题,则下一道试题答对的概率为.
(1) 若 , 考生甲第1道试题答对与答错的概率相等,记考生甲答对试题的道数为 , 求的分布列与期望;
(2) 若 , 且考生甲答对第1道试题,求他第10道试题也答对的概率.
18. 甲、乙两位同学进行轮流投篮比赛,为了增加趣味性,设计了如下方案:若投中,自己得1分,对方得0分;若投不中,自己得0分,对方得1分.已知甲投篮投中的概率为 , 乙投篮投中的概率为.由甲先投篮,无论谁投篮,每投一次为一轮比赛,规定当一人比另一人多2分或进行完5轮投篮后,活动结束,得分多的一人获胜,且两人投篮投中与否相互独立.
(1) 在结束时甲获胜的条件下,求甲比乙多2分的概率.
(2) 已知在改变比赛规则的条件下,乙获胜的概率大于在原规则的条件下乙获胜的概率.设事件“改变比赛规则”,事件“乙获胜”,已知 , 证明:.
19. 已知函数.
(1) 当时,恒成立,求的取值范围;
(2) 设 , 证明:. 题号
一
二
三
四
评分
阅卷人
得分
阅卷人
得分
阅卷人
得分
阅卷人
得分
相关试卷
这是一份数学-吉林省部分名校2023-2024学年高一下学期期末联合考试,共3页。
这是一份[数学]吉林省部分名校2023-2024数学年高一下学期联合考试期中数学试题,共5页。试卷主要包含了填写答题卡的内容用2B铅笔填写,提前 xx 分钟收取答题卡等内容,欢迎下载使用。
这是一份[数学]吉林省部分名校2023-2024数学年高二下学期联合考试期中数学试题,共4页。试卷主要包含了填写答题卡的内容用2B铅笔填写,提前 xx 分钟收取答题卡等内容,欢迎下载使用。