[数学]黑龙江省齐齐哈尔市2024年中考真题数学试卷
展开考试时间:分钟 满分:分
姓名:____________ 班级:____________ 学号:____________
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)(共10题;共30分)
1. 的相反数是( )
A . 5 B . -5 C . D .
2. 下列美术字中,既是轴对称图形又是中心对称图形的是( )
A . B . C . D .
3. 下列计算正确的是( )
A . B . C . D .
4. 将一个含30°角的三角尺和直尺如图放置,若∠1=50°,则∠2的度数是( )
A . 30° B . 40° C . 50° D . 60°
5. 如图,若几何体是由5个棱长为1的小正方体组合而成的,则该几何体左视图与俯视图的面积和是( )
A . 6 B . 7 C . 8 D . 9·
6. 如果关于x的分式方程的解是负数,那么实数m的取值范围是( )
A . m<1且m≠0 B . m<1 C . m>1 D . m<1且m≠-1
7. 六月份,在“阳光大课间”活动中,某校设计了“篮球、足球、排球、羽毛球”四种球类运动项目,且每名学生在一个大课间只能选择参加一种运动项目,则甲、乙两名学生在一个大课间参加同种球类运动项目的概率是( )
A . B . C . D .
8. 校团委开展以“我爱读书”为主题的演讲比赛活动,为奖励表现突出的学生,计划拿出200元钱全部用于购买单价分别为8元和10元的两种笔记本(两种都要购买)作为奖品,则购买方案有( )
A . 5种 B . 4种 C . 3种 D . 2种
9. 如图,在等腰Rt△ABC中,∠BAC=90°,AB=12,动点E , F同时从点A出发,分别沿射线AB和射线AC的方向匀速运动,且速度大小相同,当点E停止运动时,点F也随之停止运动,连接EF , 以EF为边向下做正方形EFGH , 设点E运动的路程为x(0
10. 如图,二次函数的图象与x轴交于(-1,0), , 其中 . 结合图象给出下列结论:
①ab>0;②a-b=-2;
③当x>1时,y随x的增大而减小;
④关于x的一元二次方程的另一个根是;
⑤b的取值范围为 . 其中正确结论的个数是( )
A . 2 B . 3 C . 4 D . 5
二、填空题(每小题3分,满分21分)(共7题;共21分)
11. 共青团中央发布数据显示:截至2023年12月底,全国共有共青团员7416.7万名.将7416.7万用科学记数法表示为____________________.
12. 如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴正半轴于点M , 交y轴正半轴于点N , 再分别以点M , N为圆心,大于的长为半径画弧,两弧在第一象限交于点H , 画射线OH , 若H(2a-1,a+1),则a=____________________.
13. 在函数中,自变量x的取值范围是____________________.
14. 若圆锥的底面半径是1cm,它的侧面展开图的圆心角是直角,则该圆锥的高为____________________cm.
15. 如图,反比例函数的图象经过平行四边形ABCO的顶点A , OC在x轴上,若点B(-1,3), , 则实数k的值为____________________.
16. 已知矩形纸片ABCD , AB=5,BC=4,点P在边BC上,连接AP , 将△ABP沿AP所在的直线折叠,点B的对应点为 , 把纸片展平,连接 , , 当为直角三角形时,线段CP的长为____________________.
17. 如图,数学活动小组在用几何画板绘制几何图形时,发现了如“花朵”形的美丽图案,他们将等腰三角形OBC置于平面直角坐标系中,点O的坐标为(0,0),点B的坐标为(1,0),点C在第一象限,∠OBC=120°.将△OBC沿x轴正方向作无滑动滚动,使它的三边依次与x轴重合,第一次滚动后,点O的对应点为 , 点C的对应点为 , OC与的交点为 , 称点为第一个“花朵”的花心,点为第二个“花朵”的花心;……;按此规律,△OBC滚动2024次后停止滚动,则最后一个“花朵”的花心的坐标为____________________.
第Ⅱ卷 主观题
第Ⅱ卷的注释
三、解答题(本题共7道大题,共69分)(共7题;共69分)
18.
(1) 计算:
(2) 分解因式:
19. 解方程: .
20. 为提高学生的环保意识,某校举行了“爱护环境,人人有责”环保知识竞赛,对收集到的数据进行了整理、描述和分析.
【收集数据】随机抽取部分学生的竞赛成绩组成一个样本.
【整理数据】将学生竞赛成绩的样本数据分成A , B , C , D四组进行整理.
(满分100分,所有竞赛成绩均不低于60分)如下表:
【描述数据】根据竞赛成绩绘制了如下两幅不完整的统计图.
【分析数据】根据以上信息,解答下列问题:
(1) 填空:m=____________________,n=____________________;
(2) 请补全条形统计图;
(3) 扇形统计图中,C组对应的圆心角的度数是____________________°;
(4) 若竞赛成绩80分以上(含80分)为优秀,请你估计该校参加竞赛的2000名学生中成绩为优秀的人数.
21. 如图,△ABC内接于⊙O , AB为⊙O的直径,CD⊥AB于点D , 将△CDB沿BC所在的直线翻折,得到△CEB , 点D的对应点为E , 延长EC交BA的延长线于点F .
(1) 求证:CF是⊙O的切线;
(2) 若 , AB=8,求图中阴影部分的面积.
22. 领航无人机表演团队进行无人机表演训练,甲无人机以a米/秒的速度从地面起飞,乙无人机从距离地面20米高的楼顶起飞,甲、乙两架无人机同时匀速上升,6秒时甲无人机到达训练计划指定的高度停止上升开始表演,完成表演动作后,按原速继续飞行上升,当甲、乙无人机按照训练计划准时到达距离地面的高度为96米时,进行了时长为t秒的联合表演,表演完成后以相同的速度大小同时返回地面.甲、乙两架无人机所在的位置距离地面的高度y(米)与无人机飞行的时间x(秒)之间的函数关系如图所示.请结合图象解答下列问题:
(1) a=____________________米/秒,t=____________________秒;
(2) 求线段MN所在直线的函数解析式;
(3) 两架无人机表演训练到多少秒时,它们距离地面的高度差为12米?(直接写出答案即可)
23. 综合与实践(本题满分12分)如图1,这个图案是3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,受这幅图的启发,数学兴趣小组建立了“一线三直角模型”.如图2,在△ABC中,∠A=90°,将线段BC绕点B顺时针旋转90°得到线段BD , 作DE⊥AB交AB的延长线于点E .
(1) 【观察感知】如图2,通过观察,线段AB与DE的数量关系是____________________;
(2) 【问题解决】如图3,连接CD并延长交AB的延长线于点F , 若AB=2,AC=6,求△BDF的面积;
(3) 【类比迁移】在(2)的条件下,连接CE交BD于点N , 则____________________;
(4) 【拓展延伸】在(2)的条件下,在直线AB上找点P , 使 , 请直接写出线段AP的长度.
24. 综合与探究(本题满分14分)如图,在平面直角坐标系中,已知直线与x轴交于点A , 与y轴交于点C , 过A , C两点的抛物线与x轴的另一个交点为点B(-1,0),点P是抛物线位于第四象限图象上的动点,过点P分别作x轴和y轴的平行线,分别交直线AC于点E , 点F .
(1) 求抛物线的解析式;
(2) 点D是x轴上的任意一点,若△ACD是以AC为腰的等腰三角形,请直接写出点D的坐标;
(3) 当EF=AC时,求点P的坐标;
(4) 在(3)的条件下,若点N是y轴上的一个动点,过点N作抛物线对称轴的垂线,垂足为M , 连接NA , MP , 则NA+MP的最小值为____________________. 题号
一
二
三
评分
阅卷人
得分
阅卷人
得分
阅卷人
得分
组别
A
B
C
D
成绩(x/分)
60≤x<70
70≤x<80
80≤x<90
90≤x≤100
人数(人)
m
94
n
16
2023年黑龙江省齐齐哈尔市中考数学真题试卷: 这是一份2023年黑龙江省齐齐哈尔市中考数学真题试卷,共11页。
2021年黑龙江省齐齐哈尔市中考数学真题: 这是一份2021年黑龙江省齐齐哈尔市中考数学真题,共6页。
2023年黑龙江省齐齐哈尔市中考数学真题: 这是一份2023年黑龙江省齐齐哈尔市中考数学真题,文件包含2023年黑龙江省齐齐哈尔市中考数学真题解析版docx、2023年黑龙江省齐齐哈尔市中考数学真题原卷版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。