2024年高二数学暑期培优讲义 第07讲 双曲线+课后巩固练习(2份打包,原卷版+教师版)
展开1.渐进线方程为x±y=0的双曲线的离心率是( )
A.eq \f(\r(2),2) B.1 C.eq \r(2) D.2
答案为:C.解析:根据渐进线方程为x±y=0的双曲线,可得a=b,所以c=eq \r(2)a
则该双曲线的离心率为e=eq \f(c,a)=eq \r(2),故选C.]
2.若实数k满足0<k<9,则曲线eq \f(x2,25)﹣eq \f(y2,9-k)=1与曲线eq \f(x2,25-k)﹣eq \f(y2,9)=1的( )
A.离心率相等 B.虚半轴长相等
C.实半轴长相等 D.焦距相等
答案为:D.解析:由0<k<9,易知两曲线均为双曲线且焦点都在x轴上,由eq \r(25+9-k)=eq \r(25-k+9),得两双曲线的焦距相等.]
3.已知抛物线y2=4x的焦点为F,准线为l.若l与双曲线eq \f(x2,a2)﹣eq \f(y2,b2)=1(a>0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为( )
A.eq \r(2) B.eq \r(3) C.2 D.eq \r(5)
答案为:D.解析:l的方程为x=﹣1,双曲线的渐近线方程为y=±eq \f(b,a)x,故得A(﹣1,eq \f(b,a)),B(﹣1,﹣eq \f(b,a)),所以eq \b\lc\|\rc\|(\a\vs4\al\c1(AB))=eq \f(2b,a),eq \f(2b,a)=4,b=2a,所以e=eq \f(c,a)=eq \f(\r(a2+b2),a)=eq \r(5),故选D.]
4.已知点A(﹣1,0),B(1,0)为双曲线eq \f(x2,a2)﹣eq \f(y2,b2)=1(a>0,b>0)的左、右顶点,点M在双曲线上,△ABM为等腰三角形,且顶角为120°,则该双曲线的标准方程为( )
A.x2﹣eq \f(y2,4)=1 B.x2﹣eq \f(y2,3)=1 C.x2﹣eq \f(y2,2)=1 D.x2﹣y2=1
答案为:D.解析:由题意知a=1.不妨设点M在第一象限,则由题意有|AB|=|BM|=2,∠ABM=120°.过点M作MN⊥x轴于点N,则|BN|=1,|MN|=eq \r(3),所以M(2,eq \r(3)),代入双曲线方程得4﹣eq \f(3,b2)=1,解得b=1,所以双曲线的方程为x2﹣y2=1,故选D.]
5.已知△ABC的顶点A(﹣5,0),B(5,0),△ABC内切圆的圆心在直线x=2上,则顶点C的轨迹方程是( )
A.eq \f(x2,4)﹣eq \f(y2,21)=1(x>2) B.eq \f(y2,4)﹣eq \f(x2,21)=1(y>2)
C.eq \f(x2,21)﹣eq \f(y2,4)=1 D.eq \f(y2,4)﹣eq \f(x2,2)=1
答案为:A.解析:如图,△ABC与内切圆的切点分别为G,E,F.|AG|=|AE|=7,|BF|=|BG|=3,|CE|=|CF|,所以|CA|﹣|CB|=7﹣3=4.根据双曲线定义,所求轨迹是以A,B为焦点,实轴长为4的双曲线的右支,方程为eq \f(x2,4)﹣eq \f(y2,21)=1(x>2).]
6.过双曲线eq \f(x2,a2)﹣eq \f(y2,b2)=1(a>0,b>0)的左、右焦点分别作双曲线的两条渐近线的平行线,若这4条直线所围成的四边形的周长为8b,则该双曲线的渐近线方程为( )
A.y=±x B.y=±eq \r(2)x C.y=±eq \r(3)x D.y=±2x
答案为:A.解析:由双曲线的对称性得该四边形为菱形,因为该四边形的周长为8b,所以菱形的边长为2b,由勾股定理得4条直线与y轴的交点到x轴的距离为eq \r(4b2-c2)=eq \r(3b2-a2),又4条直线分别与两条渐近线平行,所以eq \f(b,a)=eq \f(\r(3b2-a2),\r(a2+b2)),解得a=b,所以该双曲线的渐近线的斜率为±1,所以该双曲线的渐近线方程为y=±x,故选A.]
7.已知双曲线C:eq \f(x2,a2)﹣eq \f(y2,b2)=1(a>0,b>0)的离心率为2,左、右焦点分别为F1,F2,点A在双曲线C上,若△AF1F2的周长为10a,则△AF1F2的面积为( )
A.2eq \r(15)a2 B.eq \r(15)a2 C.30a2 D.15a2
答案为:B.解析:由双曲线的对称性不妨设A在双曲线的右支上,由e=eq \f(c,a)=2,得c=2a,∴△AF1F2的周长为|AF1|+|AF2|+|F1F2|=|AF1|+|AF2|+4a,又△AF1F2的周长为10a,∴|AF1|+|AF2|=6a,又∵|AF1|﹣|AF2|=2a,∴|AF1|=4a,|AF2|=2a,在△AF1F2中,|F1F2|=4a,
∴cs ∠F1AF2=eq \f(|AF1|2+|AF2|2-|F1F2|2,2|AF1|·|AF2|)=eq \f((4a)2+(2a)2-(4a)2,2×4a×2a)=eq \f(1,4).
又0<∠F1AF<π,∴sin ∠F1AF2=eq \f(\r(15),4),
∴S△AF1F2=eq \f(1,2)|AF1|·|AF2|·sin ∠F1AF2=eq \f(1,2)×4a×2a×eq \f(\r(15),4)=eq \r(15)a2.]
二、填空题
8.已知双曲线eq \f(x2,a2)﹣eq \f(y2,b2)=1(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为(eq \r(5),0),则a=________;b=________.
1 2 解析:[由2x+y=0,得y=﹣2x,所以eq \f(b,a)=2.又c=eq \r(5),a2+b2=c2,解得a=1,b=2.]
9.若双曲线中心在原点,焦点在坐标轴上,离心率为eq \r(2),且过点(4,﹣eq \r(10)),则该双曲线的标准方程为________.
eq \f(x2,6)﹣eq \f(y2,6)=1 解析:[依题意,e=eq \r(2)⇒a=b.设方程为eq \f(x2,m)﹣eq \f(y2,m)=1,则eq \f(16,m)﹣eq \f(10,m)=1,
解得m=6.∴eq \f(x2,6)﹣eq \f(y2,6)=1.]
10.设双曲线x2﹣eq \f(y2,3)=1的左、右焦点分别为F1,F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是________.
(2eq \r(7),8) 解析:[如图,由已知可得a=1,b=eq \r(3),c=2,从而|F1F2|=4,由对称性不妨设P在右支上,设|PF2|=m,则|PF1|=m+2a=m+2,由于△PF1F2为锐角三角形,结合实际意义需满足eq \b\lc\{(\a\vs4\al\c1((m+2)2
0 3 解析:[由题意得椭圆的半焦距满足ceq \\al(2,1)=4﹣m,双曲线的半焦距满足ceq \\al(2,2)=1+n,
又因为两曲线有相同的焦点,所以4﹣m=1+n,即m+n=3,
则4eeq \\al(2,1)﹣eeq \\al(2,2)=4×eq \f(4-m,4)﹣(1+n)=3﹣(m+n)=0.
不妨设F1,F2分别为两曲线的左、右焦点,点P为两曲线在第一象限的交点,
则eq \b\lc\{(\a\vs4\al\c1(|PF1|+|PF2|=4,,|PF1|-|PF2|=2.))解得eq \b\lc\{(\a\vs4\al\c1(|PF1|=3,,|PF2|=1,)) 则|PF1|·|PF2|=3.]
2024年高二数学暑期培优讲义 第04讲 直线方程+课后巩固练习(2份打包,原卷版+教师版): 这是一份2024年高二数学暑期培优讲义 第04讲 直线方程+课后巩固练习(2份打包,原卷版+教师版),文件包含2024年高二数学暑期培优讲义第04讲直线方程教师版doc、2024年高二数学暑期培优讲义第04讲直线方程教师版pdf、2024年高二数学暑期培优讲义第04讲直线方程课后巩固练习教师版doc、2024年高二数学暑期培优讲义第04讲直线方程课后巩固练习教师版pdf、2024年高二数学暑期培优讲义第04讲直线方程学生版doc、2024年高二数学暑期培优讲义第04讲直线方程学生版pdf、2024年高二数学暑期培优讲义第04讲直线方程课后巩固练习学生版doc、2024年高二数学暑期培优讲义第04讲直线方程课后巩固练习学生版pdf等8份试卷配套教学资源,其中试卷共82页, 欢迎下载使用。
2024年高二数学暑期培优讲义 第03讲 立体几何与空间向量+课后巩固练习(2份打包,原卷版+教师版): 这是一份2024年高二数学暑期培优讲义 第03讲 立体几何与空间向量+课后巩固练习(2份打包,原卷版+教师版),文件包含2024年高二数学暑期培优讲义第03讲立体几何与空间向量教师版doc、2024年高二数学暑期培优讲义第03讲立体几何与空间向量教师版pdf、2024年高二数学暑期培优讲义第03讲立体几何与空间向量课堂巩固练习教师版doc、2024年高二数学暑期培优讲义第03讲立体几何与空间向量课堂巩固练习教师版pdf、2024年高二数学暑期培优讲义第03讲立体几何与空间向量学生版doc、2024年高二数学暑期培优讲义第03讲立体几何与空间向量学生版pdf、2024年高二数学暑期培优讲义第03讲立体几何与空间向量课堂巩固练习学生版doc、2024年高二数学暑期培优讲义第03讲立体几何与空间向量课堂巩固练习学生版pdf等8份试卷配套教学资源,其中试卷共75页, 欢迎下载使用。
2024年高二数学暑期培优讲义 第02讲 三角恒等变换与解三角形+课后巩固练习(2份打包,原卷版+教师版): 这是一份2024年高二数学暑期培优讲义 第02讲 三角恒等变换与解三角形+课后巩固练习(2份打包,原卷版+教师版),文件包含2024年高二数学暑期培优讲义第02讲三角恒等变换与解三角形教师版doc、2024年高二数学暑期培优讲义第02讲三角恒等变换与解三角形教师版pdf、2024年高二数学暑期培优讲义第02讲三角恒等变换与解三角形课后巩固练习教师版doc、2024年高二数学暑期培优讲义第02讲三角恒等变换与解三角形课后巩固练习教师版pdf、2024年高二数学暑期培优讲义第02讲三角恒等变换与解三角形学生版doc、2024年高二数学暑期培优讲义第02讲三角恒等变换与解三角形学生版pdf、2024年高二数学暑期培优讲义第02讲三角恒等变换与解三角形课后巩固练习学生版doc、2024年高二数学暑期培优讲义第02讲三角恒等变换与解三角形课后巩固练习学生版pdf等8份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。