所属成套资源:苏科版八年级数学上册同步考点必刷练精编精品讲义必刷基础练(原卷版+解析)
苏科版八年级数学上册同步考点必刷练精编讲义必刷知识点【第5章《平面直角坐标系》章节复习巩固】(原卷版+解析)
展开
这是一份苏科版八年级数学上册同步考点必刷练精编讲义必刷知识点【第5章《平面直角坐标系》章节复习巩固】(原卷版+解析),共6页。试卷主要包含了B的距离为AB=等内容,欢迎下载使用。
章节复习巩固
知识点1:有序数对
把一对数按 ,规定了 就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000), (17,190), (21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.
知识点2:平面直角坐标系
在平面内画两条 的数轴就组成平面直角坐标系,如下图:
要点剖析:
(1)坐标平面内的点可以划分为六个区域: ,这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.
(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化.
(3)要熟记坐标系中一些特殊点的坐标及特征:
① x轴上的点 为零;y轴上的点 为零.
② 平行于x轴直线上的点横坐标 ,纵坐标 ;
平行于y轴直线上的点横坐标 ,纵坐标 .
③ 关于x轴对称的点 ,纵坐标 ;
关于y轴对称的点纵坐标 ,横坐标 ;
关于原点对称的点横、纵坐标分别 .
④ 象限角平分线上的点的坐标特征:
的点横、纵坐标相等;
的点横、纵坐标互为相反数.
注:反之亦成立.
(4)理解坐标系中用坐标表示距离的方法和结论:
① 坐标平面内点P(x,y)到x轴的距离为 ,到y轴的距离为 .
② x轴上两点A(x1,0)、B(x2,0)的距离为AB=
y轴上两点C(0,y1)、D(0,y2)的距离为CD=
③ 平行于x轴的直线上两点A(x1,y)、B(x2,y)的距离为AB=
平行于y轴的直线上两点C(x,y1)、D(x,y2)的距离为CD= .
(5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补.
知识点3:坐标方法的简单应用
1.用坐标表示地理位置
(1)建立坐标系,选择一个适当的参照点为原点,确定 ;
(2)根据具体问题确定适当的比例尺,在 ;
(3)在坐标平面内画出这些点,写出
要点剖析:
(1)我们习惯选取向东、向北分别为x轴、y轴的 ,建立坐标系的关键是确定原点的位置.
(2) 是画平面示意图的重要环节,要结合 来确定坐标轴上的单位长度.
2.用坐标表示平移
(1)点的平移
点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点 ;将点(x,y)向上(或下)平移b个单位长度,可以得到对应点
要点剖析:
上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.
(2)图形的平移
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形 ;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形 .
要点剖析:
平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“
2022-2023学年八年级数学上册考点必刷练精编讲义(苏科版)
第5章《平面直角坐标系》
章节复习巩固
知识点1:有序数对
把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000), (17,190), (21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.
知识点2:平面直角坐标系
在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:
要点剖析:
(1)坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.
(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化.
(3)要熟记坐标系中一些特殊点的坐标及特征:
① x轴上的点纵坐标为零;y轴上的点横坐标为零.
② 平行于x轴直线上的点横坐标不相等,纵坐标相等;
平行于y轴直线上的点横坐标相等,纵坐标不相等.
③ 关于x轴对称的点横坐标相等,纵坐标互为相反数;
关于y轴对称的点纵坐标相等,横坐标互为相反数;
关于原点对称的点横、纵坐标分别互为相反数.
④ 象限角平分线上的点的坐标特征:
一、三象限角平分线上的点横、纵坐标相等;
二、四象限角平分线上的点横、纵坐标互为相反数.
注:反之亦成立.
(4)理解坐标系中用坐标表示距离的方法和结论:
① 坐标平面内点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.
② x轴上两点A(x1,0)、B(x2,0)的距离为AB=|x1 - x2|;
y轴上两点C(0,y1)、D(0,y2)的距离为CD=|y1 - y2|.
③ 平行于x轴的直线上两点A(x1,y)、B(x2,y)的距离为AB=|x1 - x2|;
平行于y轴的直线上两点C(x,y1)、D(x,y2)的距离为CD=|y1 - y2|.
(5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补.
知识点3:坐标方法的简单应用
1.用坐标表示地理位置
(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;
(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.
要点剖析:
(1)我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置.
(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.
2.用坐标表示平移
(1)点的平移
点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).
要点剖析:
上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.
(2)图形的平移
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.
要点剖析:
平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.
相关试卷
这是一份苏科版八年级数学上册同步考点必刷练精编讲义必刷提高练【第5章《平面直角坐标系》章节复习巩固】(原卷版+解析),共31页。
这是一份苏科版八年级数学上册同步考点必刷练精编讲义必刷基础练【第5章《平面直角坐标系》章节复习巩固】(原卷版+解析),共23页。
这是一份苏科版八年级数学上册同步考点必刷练精编讲义必刷知识点【第4章《实数》章节复习巩固】(原卷版+解析),共7页。试卷主要包含了实数的分类,1010010001…,实数与数轴上的点一 一对应,实数的三个非负性及性质,实数的运算,实数的大小的比较等内容,欢迎下载使用。