高考数学微专题集专题7圆锥曲线之极点与极线微点3圆锥曲线之极点与极线综合训练(原卷版+解析)
展开微点3 圆锥曲线之极点与极线综合训练
(2023·内蒙古松山区月考)
1.已知椭圆的离心率为,短轴长为.
(1)求椭圆C的方程;
(2)设A,B分别为椭圆C的左、右顶点,若过点且斜率不为0的直线l与椭圆C交于M、N两点,直线AM与BN相交于点Q.证明:点Q在定直线上.
(2023·泰州期末)
2.已知,分别是双曲线的左,右顶点,直线(不与坐标轴垂直)过点,且与双曲线交于,两点.
(1)若,求直线的方程;
(2)若直线与相交于点,求证:点在定直线上.
(2023天津模拟)
3.已知椭圆与轴的交点(点A位于点的上方),为左焦点,原点到直线的距离为.
(1)求椭圆的离心率;
(2)设,直线与椭圆交于不同的两点,求证:直线与直线的交点在定直线上.
(2023滨州一模)
4.已知椭圆的离心率,长轴的左、右端点分别为
(1)求椭圆的方程;
(2)设直线 与椭圆交于两点,直线与交于点,试问:当变化时,点是否恒在一条直线上?若是,请写出这条直线的方程,并证明你的结论;若不是,请说明理由.
(2023·成都模拟)
5.已知椭圆C:经过点,其长半轴长为2.
(1)求椭圆C的方程:
(2)设经过点的直线与椭圆C相交于D,E两点,点E关于x轴的对称点为F,直线DF与x轴相交于点G,求的面积的取值范围.
6.已知椭圆的焦距为分别为椭圆的左、右顶点,为椭圆上的两点(异于),连结,且斜率是斜率的倍.
(1)求椭圆的方程;
(2)证明:直线恒过定点.
7.椭圆的左、右顶点分别为,,上顶点为,点,线的倾斜角为.
(1)求椭圆的方程;
(2)过且斜率存在的动直线与椭圆交于、两点,直线与交于,求证:在定直线上.
8.已知椭圆的离心率为,且点在椭圆上.
(1)求椭圆C的标准方程;
(2)如图,椭圆C的左、右顶点分别为A,B,点M,N是椭圆上异于A,B的不同两点,直线的斜率为,直线的斜率为,求证:直线过定点.
9.设分别是椭圆的左、右顶点,点为椭圆的上顶点.
(1)若,求椭圆的方程;
(2)设,是椭圆的右焦点,点是椭圆第二象限部分上一点,若线段的中点在轴上,求的面积.
(3)设,点是直线上的动点,点和是椭圆上异于左右顶点的两点,且,分别在直线和上,求证:直线恒过一定点.
10.已知曲线.
(1)若曲线C表示双曲线,求的范围;
(2)若曲线C是焦点在轴上的椭圆,求的范围;
(3)设,曲线C与轴交点为A,B(A在B上方),与曲线C交于不同两点M,N,与BM交于G,求证:A,G,N三点共线.
专题7 圆锥曲线之极点与极线 微点3 圆锥曲线之极点与极线综合训练
专题7 圆锥曲线之极点与极线
微点3 圆锥曲线之极点与极线综合训练
(2023·内蒙古松山区月考)
1.已知椭圆的离心率为,短轴长为.
(1)求椭圆C的方程;
(2)设A,B分别为椭圆C的左、右顶点,若过点且斜率不为0的直线l与椭圆C交于M、N两点,直线AM与BN相交于点Q.证明:点Q在定直线上.
(2023·泰州期末)
2.已知,分别是双曲线的左,右顶点,直线(不与坐标轴垂直)过点,且与双曲线交于,两点.
(1)若,求直线的方程;
(2)若直线与相交于点,求证:点在定直线上.
(2023天津模拟)
3.已知椭圆与轴的交点(点A位于点的上方),为左焦点,原点到直线的距离为.
(1)求椭圆的离心率;
(2)设,直线与椭圆交于不同的两点,求证:直线与直线的交点在定直线上.
(2023滨州一模)
4.已知椭圆的离心率,长轴的左、右端点分别为
(1)求椭圆的方程;
(2)设直线 与椭圆交于两点,直线与交于点,试问:当变化时,点是否恒在一条直线上?若是,请写出这条直线的方程,并证明你的结论;若不是,请说明理由.
(2023·成都模拟)
5.已知椭圆C:经过点,其长半轴长为2.
(1)求椭圆C的方程:
(2)设经过点的直线与椭圆C相交于D,E两点,点E关于x轴的对称点为F,直线DF与x轴相交于点G,求的面积的取值范围.
6.已知椭圆的焦距为分别为椭圆的左、右顶点,为椭圆上的两点(异于),连结,且斜率是斜率的倍.
(1)求椭圆的方程;
(2)证明:直线恒过定点.
7.椭圆的左、右顶点分别为,,上顶点为,点,线的倾斜角为.
(1)求椭圆的方程;
(2)过且斜率存在的动直线与椭圆交于、两点,直线与交于,求证:在定直线上.
8.已知椭圆的离心率为,且点在椭圆上.
(1)求椭圆C的标准方程;
(2)如图,椭圆C的左、右顶点分别为A,B,点M,N是椭圆上异于A,B的不同两点,直线的斜率为,直线的斜率为,求证:直线过定点.
9.设分别是椭圆的左、右顶点,点为椭圆的上顶点.
(1)若,求椭圆的方程;
(2)设,是椭圆的右焦点,点是椭圆第二象限部分上一点,若线段的中点在轴上,求的面积.
(3)设,点是直线上的动点,点和是椭圆上异于左右顶点的两点,且,分别在直线和上,求证:直线恒过一定点.
10.已知曲线.
(1)若曲线C表示双曲线,求的范围;
(2)若曲线C是焦点在轴上的椭圆,求的范围;
(3)设,曲线C与轴交点为A,B(A在B上方),与曲线C交于不同两点M,N,与BM交于G,求证:A,G,N三点共线.
参考答案:
1.(1);(2)证明见解析.
【解析】(1)用离心率公式和列方程求得,即可得椭圆方程;
(2)方法一:设直线,,联立椭圆方程,由韦达定理得关系,由直线和方程联立求解交点坐标,并化简得,即可证明问题;
方法二:设,,,两两不等,
因为P,M,N三点共线,由斜率相等得到方程,同理A,M,Q三点共线与B,N,Q三点共线也得到两方程,再结合三条方程求解,即可证明问题.
【详解】解:(1)因为椭圆的离心率,,,
又,.
因为,所以,,
所以椭圆C的方程为.
(2)解法一:设直线,,,
,可得,
所以.
直线AM的方程:①
直线BN的方程:②
由对称性可知:点Q在垂直于x轴的直线上,
联立①②可得.
因为,
所以
所以点Q在直线上.
解法二:设,,,两两不等,
因为P,M,N三点共线,
所以,
整理得:.
又A,M,Q三点共线,有:①
又B,N,Q三点共线,有②将①与②两式相除得:
即,
将即
代入得:解得(舍去)或,(因为直线与椭圆相交故)
所以Q在定直线上.
【点晴】求解直线与圆锥曲线定点定值问题:关键在于运用设而不求思想、联立方程和韦达定理,构造坐标点方程从而解决相关问题.
2.(1)或;(2)证明见解析.
【解析】(1)设直线的方程为并联立双曲线根据韦达定理可得与关系,结合可得,从而求得值得直线方程;
(2)列出直线与方程,并求点坐标得,故得证.
【详解】解:设直线的方程为,设,,把直线与双曲线
联立方程组,,可得,
则,
(1),,由,可得,
即①,②,
把①式代入②式,可得,解得,,
即直线的方程为或.
(2)直线的方程为,直线的方程为,
直线与的交点为,故,即,
进而得到,又,
故,解得
故点在定直线上.
【点晴】方法点晴:直线与圆锥曲线综合问题,通常采用设而不求,结合韦达定理求解.
3.(1);(2)证明见解析.
分析:(1)设,原点到直线的距离为,列出方程,即可求解椭圆的离心率;
(2)求出椭圆的方程,联立方程组,通过韦达定理,设,求出的方程,的方程,求出交点坐标,即可推出结果.
【详解】(1)设的坐标为,由面积法有,椭圆的离心率.
(2)若,由(1) 得,椭圆方程为,
联立方程组化简得:,
由,解得:.
由韦达定理得:,,
设,的方程是
,的方程是,
联立化简得,即,
所以直线与直线的交点在定直线上.
4.(1)
(2)恒在直线
分析:(1)设椭圆的标准方程为,由且,求得的值,即可求解;
(2)设直线的方程为,取,得到点在同一直线上,结合结论作出证明:联立方程组求得,设和与交于点和,结合,即可求解.
(1)
解:设椭圆的标准方程为,
根据题意,可得且,所以,所以,
所以椭圆的标准方程为.
(2)
解:根据题意,可设直线的方程为,
取,可得,
可得直线的方程为,直线的方程为,
联立方程组,可得交点为;
若,由对称性可知交点,
若点在同一直线上,则直线只能为;
以下证明:对任意的,直线与直线的交点均在直线上,
由,整理得,
设,则,
设与交于点,由,可得,
设与交于点,由,可得,
因为
,
因为,即与重合,
所以当变化时,点均在直线上,.
5.(1)
(2)
分析:(1)依题意可得,再由椭圆过点,代入椭圆方程,即可求出,即可求出椭圆方程;
(2)设直线的方程为,,,联立直线与椭圆方程,消元、列出韦达定理,再表示出的方程,从而求出点坐标,即可得到,令,再根据对勾函数的性质求出面积的取值范围;
(1)
解:由已知得,∴椭圆C的方程为
∵椭圆经过点,
∴,解得
∴椭圆C的方程为
(2)
解:由题意知,直线的斜率存在且不为0,
设直线的方程为,,,
由,消去得,
∴,,,
∵为点关于轴的对称点,
∴,直线的方程为,
即
令,则
∴,
∴的面积
,
令,则,
∴,又函数在上单调递增,
所以,
∴,
∴的面积的取值范围是
6.(1);
(2)证明见解析.
分析:(1)根据题意列出方程组,解出方程组即可得椭圆方程;(2)连结设,由椭圆的性质可得出,故而可得,当斜率不存在时,设,解出,当直线斜率存在时,设,联立直线与椭圆的方程,结合韦达定理,可得出,得出与的关系,代入直线方程即可得定点.
【详解】(1)因为,所以,即椭圆的方程为
(2)连结设则
因为点在椭圆上,所以
因为,所以
当斜率不存在时,设,不妨设在轴上方,
因为,所以
(ii)当斜率存在时,设,
即,所以
因为
所以,即或
当时,,恒过定点,当斜率不存在亦符合:当,,过点与点重合,舍去.
所以直线恒过定点
【点睛】本题考查了椭圆的标准方程及其性质、直线与椭圆相交、一元二次方程的根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于中档题.
7.(1);(2)证明见解析.
【解析】(1)由题意和过两点的直线的斜率公式可求得b,可得椭圆的方程.
(2)设,,,设过的动直线:,代入椭圆的方程得: ,由韦达定理得:,,再由,,及,,三点共线,化简可得证明点在定直线上.
【详解】(1),由题意,,
所以椭圆的方程.
(2)设,,,过的动直线:,代入椭圆的方程得:
,得:,,
,
分别由,,及,,三点共线,得:,,
两式相除得:
,
得:,即在直线上.
【点睛】本题考查求椭圆的标准方程,直线与椭圆的位置关系之交点问题之动点在定直线上,属于较难题.
8.(1);(2)证明见解析.
分析:(1)由,得到,再由点在该椭圆上,求得的值,即可求得椭圆的方程;
(2)设的方程为,联立方程组求得,再由的的方程,联立方程组,求得,结合斜率公式,进而得到直线过定点.
【详解】(1)由椭圆的离心率为,且点在椭圆上,
可得,所以,
又点在该椭圆上,所以,所以,
所以椭圆C的标准方程为
(2)由于的斜率为,设的方程为,
联立方程组,整理得,
所以,所以,
从而,即,
同理可得:由于的斜率为,则,
联立方程组,可得,
即,
所以,所以,
从而,即,
当时即;时,,过点,
当时,,,即,所以直线过点,
综上可得,直线过点.
【点睛】解答圆锥曲线的定点、定值问题的策略:
1、参数法:参数解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中核心变量(通常为变量);②利用条件找到过定点的曲线之间的关系,得到关于与的等式,再研究变化量与参数何时没有关系,得出定点的坐标;
2、由特殊到一般发:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.
9.(1);(2);(3)证明见解析.
【解析】(1)计算得,,代入解方程即可得,故可得椭圆的方程;
(2)设另一焦点为,则轴,计算出点坐标,计算即可;
(3)设点P的坐标为,直线:,与椭圆方程联立,由韦达定理计算得出,同理可得,分,两种情况表示出直线方程,从而确定出定点.
【详解】(1),
,,,解得
即椭圆的方程为.
(2)椭圆的方程为,由题意,设另一焦点为,
设,由线段的中点在y轴上,得轴,所以,
代入椭圆方程得,即
;
(3)证明:由题意,设点P的坐标为,
直线:,与椭圆方程联立
消去得:
由韦达定理得即;
同理;
当,即即时,
直线的方程为;
当时,直线:
化简得,恒过点;
综上所述,直线恒过点.
【点睛】关键点睛:解决第(3)的关键是能够运用韦达定理表示出点的坐标,从而表示出直线,并能通过运算整理成关于的方程,从而确定出定点,考查学生的运算求解能力,有一定的难度.
10.(1);(2);(3)见解析
分析:(1)若曲线表示双曲线,则:,解得的范围;(2)若曲线是焦点在轴上的椭圆,则,解得的取值范围;(3)联立直线与椭圆方程结合,解得,设,,,求出的方程,可得,从而可得,,欲证,,三点共线,只需证,共线,利用韦达定理,可以证明.
【详解】(1)若曲线表示双曲线,则:,
解得:.
(2)若曲线是焦点在轴上的椭圆,
则:,
解得:
(3)当,曲线可化为:,
当时,,
故点坐标为:,,
将直线代入椭圆方程得:,
若与曲线交于不同两点,,
则,解得,
由韦达定理得: ①,
②
设,,,
方程为:,则,
∴,,
欲证,,三点共线,只需证,共线,
即,
将①②代入可得等式成立,则,,三点共线得证.
【点睛】本题考查椭圆和双曲线的标准方程,考查直线与椭圆的位置关系,考查三点共线,解题的关键是直线与椭圆方程联立,利用韦达定理进行求解,属于中档题.
专题12 圆锥曲线之极点与极线综合训练: 这是一份专题12 圆锥曲线之极点与极线综合训练,共19页。
高考数学二轮专题复习——极点极线及高中圆锥曲线必备公式: 这是一份高考数学二轮专题复习——极点极线及高中圆锥曲线必备公式,共32页。
圆锥曲线系统班43、极点与极线: 这是一份圆锥曲线系统班43、极点与极线,共16页。