高考数学一轮复习考点探究与题型突破第53讲抛物线(原卷版+解析)
展开1.抛物线的概念
把平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线l叫做抛物线的准线.
2.抛物线的标准方程和简单几何性质
常用结论
抛物线焦点弦的几个常用结论
设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),则
(1)x1x2=eq \f(p2,4),y1y2=-p2;
(2)若A在第一象限,B在第四象限,则|AF|=eq \f(p,1-cs α),|BF|=eq \f(p,1+cs α),弦长|AB|=x1+x2+p=eq \f(2p,sin2α)(α为弦AB的倾斜角);
(3)eq \f(1,|FA|)+eq \f(1,|FB|)=eq \f(2,p);
(4)以弦AB为直径的圆与准线相切;
(5)以AF或BF为直径的圆与y轴相切;
(6)过焦点弦的端点的切线互相垂直且交点在准线上;
(7)通径:过焦点与对称轴垂直的弦长等于2p.
考点1 ******
[名师点睛]
求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.
[典例]
1.(2023·全国Ⅰ)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p等于( )
A.2 B.3 C.6 D.9
2.设抛物线y2=2px的焦点在直线2x+3y-8=0上,则该抛物线的准线方程为( )
A.x=-4 B.x=-3
C.x=-2 D.x=-1
3.已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,点A是抛物线C上一点,AD⊥l,交l于D.若|AF|=4,∠DAF=60°,则抛物线C的方程为( )
A.y2=8x B.y2=4x
C.y2=2x D.y2=x
[举一反三]
1.已知抛物线y2=4x的焦点为F,M,N是抛物线上两个不同的点.若|MF|+|NF|=5,则线段MN的中点到y轴的距离为( )
A.3 B.eq \f(3,2) C.5 D.eq \f(5,2)
2.(2023·济南模拟)已知抛物线x2=2py(p>0),过焦点F的直线与抛物线交于A,B两点(点A在第一象限).若直线AB的斜率为eq \f(\r(3),3),点A的纵坐标为eq \f(3,2),则p的值为( )
A.eq \f(1,4) B.eq \f(1,2) C.1 D.2
3.如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A、B,交其准线l于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为________.
4.(2023·广州模拟)已知抛物线x2=2py(p>0)的焦点为F,准线为l,点P(4,y0)在抛物线上,K为l与y轴的交点,且|PK|=eq \r(2)|PF|,则y0=________,p=________.
考点2 抛物线的几何性质
[名师点睛]
应用抛物线的几何性质解题时,常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性
[典例]
1.(2023·新高考全国Ⅱ)抛物线y2=2px(p>0)的焦点到直线y=x+1的距离为eq \r(2),则p等于( )
A.1 B.2 C.2eq \r(2) D.4
2.(多选)已知抛物线C:y2=2px(p>0)的焦点为F,直线l的斜率为eq \r(3)且经过点F,与抛物线C交于A,B两点(点A在第一象限),与抛物线C的准线交于点D.若|AF|=8,则以下结论正确的是( )
A.p=4 B.eq \(DF,\s\up6(→))=eq \(FA,\s\up6(→))
C.|BD|=2|BF| D.|BF|=4
3.设P是抛物线y2=4x上的一个动点,则点P到点A(-1,1)的距离与点P到直线x=-1的距离之和的最小值为________.
[举一反三]
1.抛物线y2=2px(p>0)准线上的点A与抛物线上的点B关于原点O对称,线段AB的垂直平分线OM与抛物线交于点M,若直线MB经过点N(4,0),则抛物线的焦点坐标是( )
A.(4,0) B.(2,0)
C.(1,0) D.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),0))
2.(多选)(2023·唐山模拟)抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线r:y2=x,O为坐标原点,一束平行于x轴的光线l1从点Peq \b\lc\(\rc\)(\a\vs4\al\c1(\f(41,16),1))射入,经过r上的点A(x1,y1)反射后,再经r上另一点B(x2,y2)反射后,沿直线l2射出,经过点Q,则( )
A.y1y2=-1
B.|AB|=eq \f(25,16)
C.PB平分∠ABQ
D.延长AO交直线x=-eq \f(1,4)于点C,则C,B,Q三点共线
3.(2023·新高考全国Ⅰ)已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程为________.
考点3 直线与抛物线
[名师点睛]
(1)求解直线与抛物线问题,一般利用方程法,但涉及抛物线的弦长、中点、距离等问题时,要注意“设而不求”“整体代入”“点差法”以及定义的灵活应用.
(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x轴的正半轴上),可直接使用公式|AB|=x1+x2+p,若不过焦点,则可用弦长公式.
[典例]
(2023·湖州模拟)如图,已知抛物线x2=y,点Aeq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2),\f(1,4))),Beq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2),\f(9,4))),抛物线上的点P(x,y)eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)<x<\f(3,2))).过点B作直线AP的垂线,垂足为Q.
(1)求直线AP斜率的取值范围;
(2)求|PA|·|PQ|的最大值.
[举一反三]
已知抛物线C:y2=3x的焦点为F,斜率为eq \f(3,2)的直线l与C的交点为A,B,与x轴的交点为P.
(1)若|AF|+|BF|=4,求l的方程;
(2)若eq \(AP,\s\up6(→))=3eq \(PB,\s\up6(→)),求|AB|.
标准方程
y2=2px(p>0)
y2=-2px(p>0)
x2=2py(p>0)
x2=-2py(p>0)
图形
范围
x≥0,y∈R
x≤0,y∈R
y≥0,x∈R
y≤0,x∈R
焦点
eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(p,2),0))
eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(p,2),0))
eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(p,2)))
eq \b\lc\(\rc\)(\a\vs4\al\c1(0,-\f(p,2)))
准线方程
x=-eq \f(p,2)
x=eq \f(p,2)
y=-eq \f(p,2)
y=eq \f(p,2)
对称轴
x轴
y轴
顶点
(0,0)
离心率
e=1
第53讲 抛物线
1.抛物线的概念
把平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线l叫做抛物线的准线.
2.抛物线的标准方程和简单几何性质
常用结论
抛物线焦点弦的几个常用结论
设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),则
(1)x1x2=eq \f(p2,4),y1y2=-p2;
(2)若A在第一象限,B在第四象限,则|AF|=eq \f(p,1-cs α),|BF|=eq \f(p,1+cs α),弦长|AB|=x1+x2+p=eq \f(2p,sin2α)(α为弦AB的倾斜角);
(3)eq \f(1,|FA|)+eq \f(1,|FB|)=eq \f(2,p);
(4)以弦AB为直径的圆与准线相切;
(5)以AF或BF为直径的圆与y轴相切;
(6)过焦点弦的端点的切线互相垂直且交点在准线上;
(7)通径:过焦点与对称轴垂直的弦长等于2p.
考点1 ******
[名师点睛]
求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.
[典例]
1.(2023·全国Ⅰ)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p等于( )
A.2 B.3 C.6 D.9
答案 C
解析 设A(x,y),由抛物线的定义知,点A到准线的距离为12,即x+eq \f(p,2)=12.
又因为点A到y轴的距离为9,即x=9,
所以9+eq \f(p,2)=12,解得p=6.
2.设抛物线y2=2px的焦点在直线2x+3y-8=0上,则该抛物线的准线方程为( )
A.x=-4 B.x=-3
C.x=-2 D.x=-1
答案 A
解析 直线2x+3y-8=0与x轴的交点为(4,0),∴抛物线y2=2px的焦点为(4,0),∴准线方程为x=-4.
3.已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,点A是抛物线C上一点,AD⊥l,交l于D.若|AF|=4,∠DAF=60°,则抛物线C的方程为( )
A.y2=8x B.y2=4x
C.y2=2x D.y2=x
答案 B
解析 根据抛物线的定义可得|AD|=|AF|=4,
又∠DAF=60°,
所以|AD|-p=|AF|cs 60°=eq \f(1,2)|AF|,
所以4-p=2,解得p=2,
所以抛物线C的方程为y2=4x.
[举一反三]
1.已知抛物线y2=4x的焦点为F,M,N是抛物线上两个不同的点.若|MF|+|NF|=5,则线段MN的中点到y轴的距离为( )
A.3 B.eq \f(3,2) C.5 D.eq \f(5,2)
答案 B
解析 由题意知抛物线的准线方程为x=-1,分别过点M,N作准线的垂线,垂足为M′,N′(图略),
根据抛物线的定义得|MF|=|MM′|,|NF|=|NN′|,所以|MF|+|NF|=|MM′|+|NN′|,
所以线段MN的中点到准线的距离为eq \f(1,2)(|MF|+|NF|)=eq \f(5,2),所以线段MN的中点到y轴的距离为eq \f(5,2)-1=eq \f(3,2).
2.(2023·济南模拟)已知抛物线x2=2py(p>0),过焦点F的直线与抛物线交于A,B两点(点A在第一象限).若直线AB的斜率为eq \f(\r(3),3),点A的纵坐标为eq \f(3,2),则p的值为( )
A.eq \f(1,4) B.eq \f(1,2) C.1 D.2
答案 C
解析 由题意得,抛物线x2=2py(p>0)的焦点在y轴上,准线方程为y=-eq \f(p,2),
设A(xA,yA),则|AF|=yA+eq \f(p,2)=eq \f(3,2)+eq \f(p,2),设直线AB的倾斜角为α,则tan α=eq \f(\r(3),3),
因为α∈[0,π),所以α=eq \f(π,6),所以|AF|=eq \f(yA-\f(p,2),sin α)=eq \f(\f(3,2)-\f(p,2),sin α)=eq \f(3-p,2sin α)=eq \f(3-p,2×\f(1,2))=3-p,
所以3-p=eq \f(3,2)+eq \f(p,2),解得p=1.
3.如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A、B,交其准线l于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为________.
答案 y2=3x
解析 如图,分别过A、B作AA1⊥l于A1,BB1⊥l于B1,由抛物线的定义知:|AF|=|AA1|,|BF|=|BB1|,∵|BC|=2|BF|,∴|BC|=2|BB1|,∴∠BCB1=30°,∴∠AFx=60°,连接A1F,则△AA1F为等边三角形,过F作FF1⊥AA1于F1,则F1为AA1的中点,设l交x轴于K,则|KF|=|A1F1|=eq \f(1,2)|AA1|=eq \f(1,2)|AF|,即p=eq \f(3,2),∴抛物线方程为y2=3x.
4.(2023·广州模拟)已知抛物线x2=2py(p>0)的焦点为F,准线为l,点P(4,y0)在抛物线上,K为l与y轴的交点,且|PK|=eq \r(2)|PF|,则y0=________,p=________.
答案 2 4
解析 作PM⊥l,垂足为M,由抛物线定义知|PM|=|PF|,又知|PK|=eq \r(2)|PF|,
∴在Rt△PKM中,sin∠PKM=eq \f(|PM|,|PK|)=eq \f(|PF|,|PK|)=eq \f(\r(2),2),
∴∠PKM=45°,∴△PMK为等腰直角三角形,
∴|PM|=|MK|=4,
又知点P在抛物线x2=2py(p>0)上,
∴eq \b\lc\{(\a\vs4\al\c1(py0=8,,y0+\f(p,2)=4,))解得eq \b\lc\{(\a\vs4\al\c1(p=4,,y0=2.))
考点2 抛物线的几何性质
[名师点睛]
应用抛物线的几何性质解题时,常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性
[典例]
1.(2023·新高考全国Ⅱ)抛物线y2=2px(p>0)的焦点到直线y=x+1的距离为eq \r(2),则p等于( )
A.1 B.2 C.2eq \r(2) D.4
答案 B
解析 抛物线的焦点坐标为eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(p,2),0)),其到直线x-y+1=0的距离d=eq \f(\b\lc\|\rc\|(\a\vs4\al\c1(\f(p,2)-0+1)),\r(1+1))=eq \r(2),
解得p=2(p=-6舍去).
2.(多选)已知抛物线C:y2=2px(p>0)的焦点为F,直线l的斜率为eq \r(3)且经过点F,与抛物线C交于A,B两点(点A在第一象限),与抛物线C的准线交于点D.若|AF|=8,则以下结论正确的是( )
A.p=4 B.eq \(DF,\s\up6(→))=eq \(FA,\s\up6(→))
C.|BD|=2|BF| D.|BF|=4
答案 ABC
解析 如图所示,分别过点A,B作抛物线C的准线的垂线,垂足分别为点E,M,连接EF.设抛物线C的准线交x轴于点P,则|PF|=p.因为直线l的斜率为eq \r(3),所以其倾斜角为60°.
因为AE∥x轴,所以∠EAF=60°,
由抛物线的定义可知,|AE|=|AF|,
则△AEF为等边三角形,
所以∠EFP=∠AEF=60°,
则∠PEF=30°,
所以|AF|=|EF|=2|PF|=2p=8,得p=4,
故A正确;
因为|AE|=|EF|=2|PF|,且PF∥AE,
所以F为AD的中点,则eq \(DF,\s\up6(→))=eq \(FA,\s\up6(→)),故B正确;
因为∠DAE=60°,所以∠ADE=30°,
所以|BD|=2|BM|=2|BF|,故C正确;
因为|BD|=2|BF|,
所以|BF|=eq \f(1,3)|DF|=eq \f(1,3)|AF|=eq \f(8,3),故D错误.
3.设P是抛物线y2=4x上的一个动点,则点P到点A(-1,1)的距离与点P到直线x=-1的距离之和的最小值为________.
答案 eq \r(5)
解析 如图,易知抛物线的焦点为F(1,0),准线是x=-1,由抛物线的定义知点P到直线x=-1的距离等于点P到F的距离.于是,问题转化为在抛物线上求一点P,使点P到点A(-1,1)的距离与点P到F(1,0)的距离之和最小,显然,连接AF与抛物线相交的点即为满足题意的点,此时最小值为eq \r([1-(-1)]2+(0-1)2)=eq \r(5).
[举一反三]
1.抛物线y2=2px(p>0)准线上的点A与抛物线上的点B关于原点O对称,线段AB的垂直平分线OM与抛物线交于点M,若直线MB经过点N(4,0),则抛物线的焦点坐标是( )
A.(4,0) B.(2,0)
C.(1,0) D.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),0))
答案 C
解析 设点B(x1,y1),M(x2,y2),
则点A(-x1,-y1),可得-x1=-eq \f(p,2),
则x1=eq \f(p,2),
设直线MB的方程为x=my+4,
联立eq \b\lc\{\rc\ (\a\vs4\al\c1(x=my+4,,y2=2px,))可得y2-2mpy-8p=0,
所以y1y2=-8p,
由题意可知,eq \(OB,\s\up6(→))·eq \(OM,\s\up6(→))=x1x2+y1y2=eq \f(y\\al(2,1)y\\al(2,2),4p2)+y1y2
=eq \f(64p2,4p2)-8p=16-8p=0,解得p=2.
因此,抛物线的焦点为(1,0).
2.(多选)(2023·唐山模拟)抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线r:y2=x,O为坐标原点,一束平行于x轴的光线l1从点Peq \b\lc\(\rc\)(\a\vs4\al\c1(\f(41,16),1))射入,经过r上的点A(x1,y1)反射后,再经r上另一点B(x2,y2)反射后,沿直线l2射出,经过点Q,则( )
A.y1y2=-1
B.|AB|=eq \f(25,16)
C.PB平分∠ABQ
D.延长AO交直线x=-eq \f(1,4)于点C,则C,B,Q三点共线
答案 BCD
解析 设抛物线的焦点为F,则Feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,4),0)).
因为Peq \b\lc\(\rc\)(\a\vs4\al\c1(\f(41,16),1)),且l1∥x轴,故A(1,1),
故直线AF:y=eq \f(1-0,1-\f(1,4))eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(1,4)))=eq \f(4,3)x-eq \f(1,3).
由eq \b\lc\{\rc\ (\a\vs4\al\c1(y=\f(4,3)x-\f(1,3),,y2=x))可得y2-eq \f(3,4)y-eq \f(1,4)=0,故y1y2=-eq \f(1,4),故A错误;
又y1=1,故y2=-eq \f(1,4),故Beq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,16),-\f(1,4))),故|AB|=1+eq \f(1,16)+eq \f(1,2)=eq \f(25,16),故B正确;
直线AO:y=x,由eq \b\lc\{\rc\ (\a\vs4\al\c1(y=x,,x=-\f(1,4)))可得Ceq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,4),-\f(1,4))),故yC=y2,
所以C,B,Q三点共线,故D正确;
因为|AP|=eq \f(41,16)-1=eq \f(25,16)=|AB|,
故△APB为等腰三角形,故∠ABP=∠APB,
而l1∥l2,故∠PBQ=∠APB,
即∠ABP=∠PBQ,
故PB平分∠ABQ,故C正确.
3.(2023·新高考全国Ⅰ)已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程为________.
答案 x=-eq \f(3,2)
解析 方法一 (解直角三角形法)由题易得|OF|=eq \f(p,2),|PF|=p,∠OPF=∠PQF,
所以tan∠OPF=tan∠PQF,
所以eq \f(|OF|,|PF|)=eq \f(|PF|,|FQ|),即eq \f(\f(p,2),p)=eq \f(p,6),
解得p=3,所以C的准线方程为x=-eq \f(3,2).
方法二 (应用射影定理法)由题易得|OF|=eq \f(p,2),|PF|=p,|PF|2=|OF|·|FQ|,
即p2=eq \f(p,2)×6,解得p=3或p=0(舍去),
所以C的准线方程为x=-eq \f(3,2).
考点3 直线与抛物线
[名师点睛]
(1)求解直线与抛物线问题,一般利用方程法,但涉及抛物线的弦长、中点、距离等问题时,要注意“设而不求”“整体代入”“点差法”以及定义的灵活应用.
(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x轴的正半轴上),可直接使用公式|AB|=x1+x2+p,若不过焦点,则可用弦长公式.
[典例]
(2023·湖州模拟)如图,已知抛物线x2=y,点Aeq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2),\f(1,4))),Beq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2),\f(9,4))),抛物线上的点P(x,y)eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)<x<\f(3,2))).过点B作直线AP的垂线,垂足为Q.
(1)求直线AP斜率的取值范围;
(2)求|PA|·|PQ|的最大值.
解 (1)设直线AP的斜率为k,k=eq \f(x2-\f(1,4),x+\f(1,2))=x-eq \f(1,2),因为-eq \f(1,2)<x<eq \f(3,2),
所以直线AP斜率的取值范围是(-1,1).
(2)联立直线AP与BQ的方程
eq \b\lc\{(\a\vs4\al\c1(kx-y+\f(1,2)k+\f(1,4)=0,,x+ky-\f(9,4)k-\f(3,2)=0,))解得点Q的横坐标是xQ=eq \f(-k2+4k+3,2(k2+1)).
因为|PA|=eq \r(1+k2)eq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(1,2)))=eq \r(1+k2)(k+1),
|PQ|=eq \r(1+k2)(xQ-x)=-eq \f((k-1)(k+1)2,\r(k2+1)),
所以|PA|·|PQ|=-(k-1)(k+1)3.
令f(k)=-(k-1)(k+1)3,
因为f′(k)=-(4k-2)(k+1)2,
所以f(k)在区间eq \b\lc\(\rc\)(\a\vs4\al\c1(-1,\f(1,2)))上单调递增,eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),1))上单调递减,
因此当k=eq \f(1,2)时,|PA|·|PQ|取得最大值eq \f(27,16).
[举一反三]
已知抛物线C:y2=3x的焦点为F,斜率为eq \f(3,2)的直线l与C的交点为A,B,与x轴的交点为P.
(1)若|AF|+|BF|=4,求l的方程;
(2)若eq \(AP,\s\up6(→))=3eq \(PB,\s\up6(→)),求|AB|.
解 设直线l:y=eq \f(3,2)x+t,
A(x1,y1),B(x2,y2).
(1)由题设得Feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,4),0)),
故|AF|+|BF|=x1+x2+eq \f(3,2).
又|AF|+|BF|=4,所以x1+x2=eq \f(5,2).
由eq \b\lc\{\rc\ (\a\vs4\al\c1(y=\f(3,2)x+t,,y2=3x,))
可得9x2+12(t-1)x+4t2=0,
则x1+x2=-eq \f(12t-1,9).
从而-eq \f(12t-1,9)=eq \f(5,2),得t=-eq \f(7,8).
所以l的方程为y=eq \f(3,2)x-eq \f(7,8).
(2)由eq \(AP,\s\up6(→))=3eq \(PB,\s\up6(→))可得y1=-3y2.
由eq \b\lc\{\rc\ (\a\vs4\al\c1(y=\f(3,2)x+t,,y2=3x,))可得y2-2y+2t=0,
所以y1+y2=2,从而-3y2+y2=2,
故y2=-1,y1=3.
代入C的方程得x1=3,x2=eq \f(1,3),
即A(3,3),Beq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3),-1)).
故|AB|=eq \f(4\r(13),3).
标准方程
y2=2px(p>0)
y2=-2px(p>0)
x2=2py(p>0)
x2=-2py(p>0)
图形
范围
x≥0,y∈R
x≤0,y∈R
y≥0,x∈R
y≤0,x∈R
焦点
eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(p,2),0))
eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(p,2),0))
eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(p,2)))
eq \b\lc\(\rc\)(\a\vs4\al\c1(0,-\f(p,2)))
准线方程
x=-eq \f(p,2)
x=eq \f(p,2)
y=-eq \f(p,2)
y=eq \f(p,2)
对称轴
x轴
y轴
顶点
(0,0)
离心率
e=1
高考数学一轮复习考点探究与题型突破第48讲圆的方程(原卷版+解析): 这是一份高考数学一轮复习考点探究与题型突破第48讲圆的方程(原卷版+解析),共14页。试卷主要包含了圆的定义和圆的方程等内容,欢迎下载使用。
高考数学一轮复习考点探究与题型突破第38讲数列的综合应用(原卷版+解析): 这是一份高考数学一轮复习考点探究与题型突破第38讲数列的综合应用(原卷版+解析),共22页。
高考数学一轮复习考点探究与题型突破第37讲数列求和(原卷版+解析): 这是一份高考数学一轮复习考点探究与题型突破第37讲数列求和(原卷版+解析),共18页。试卷主要包含了特殊数列的求和公式,数列求和的几种常用方法等内容,欢迎下载使用。