高考物理【热点·重点·难点】专练(全国通用)重难点07动量(原卷版+解析)—
展开动量观点是解决物理问题的三大观点之一。动量定理能计算合力的冲量或某一个力的冲量。动量守恒定律能解决动量守恒的很多物理问题,使复杂的问题简单化。特别像反冲、碰撞、爆炸等物理问题常常结合物理研究情境和生产、生活中的问题情境命题,多过程问题中经常结合动力学、能量、动量等多种观点解决问题。
例题1. (2022·北京·高考真题)“雪如意”是我国首座国际标准跳台滑雪场地。跳台滑雪运动中,裁判员主要根据运动员在空中的飞行距离和动作姿态评分。运动员在进行跳台滑雪时大致经过四个阶段:①助滑阶段,运动员两腿尽量深蹲,顺着助滑道的倾斜面下滑;②起跳阶段,当进入起跳区时,运动员两腿猛蹬滑道快速伸直,同时上体向前伸展;③飞行阶段,在空中运动员保持身体与雪板基本平行、两臂伸直贴放于身体两侧的姿态;④着陆阶段,运动员落地时两腿屈膝,两臂左右平伸。下列说法正确的是( )
A.助滑阶段,运动员深蹲是为了减小与滑道之间的摩擦力
B.起跳阶段,运动员猛蹬滑道主要是为了增加向上的速度
C.飞行阶段,运动员所采取的姿态是为了增加水平方向速度
D.着陆阶段,运动员两腿屈膝是为了减少与地面的作用时间
例题2. (2022·北京大兴精华学校三模)神舟十三号载人飞船的返回舱距地面10km时开始启动降落伞装置,速度减至10m/s,并以这个速度开始在大气中降落。在距地面1m时,返回舱的四台缓冲发动机开始竖直向下喷气,舱体再次减速。每次喷气时间极短,返回舱的质量和降落伞提供的阻力可以认为不变。
(1)设最后减速过程中返回舱做匀减速直线运动,并且到达地面时恰好速度为0,求:
a.最后减速阶段的加速度大小;
b.返回舱的总质量大约3吨,根据资料,返回舱发动机对地喷气速度约为3km/s,试估算每秒每个喷嘴喷出的气体质量。
(2)若返回舱总质量为M,当其以速度匀速下落过程中,开动喷气发动机开始竖直向下喷气,每次喷出气体的质量为m,则:
a.如果喷出气体相对地面的速度大小为v,喷气两次后返回舱的速度是多大?
b.如果喷出气体相对喷嘴的速度大小为v,喷气两次后返回舱的速度是多大?
一、动量定理的应用
1.恒力:求Δp时,用Δp=Ft。
2.变力:求I时,用I=Δp=mv2-mv1。
3.Δp一定:Ft为确定值,F=eq \f(Δp,t),t小F大——如碰撞;t大F小——如缓冲。
4.矢量性:动量定理的表达式是矢量式,在一维情况下,各个矢量必须选取统一的正方向。
5.流体类:对于连续流体应用动量定理时,要确定小段时间Δt的连续体为研究对象,写出Δt内的质量Δm与Δt的关系式,分析连续Δm的受力情况和动量变化。
二、动量守恒定律的条件及应用
1.动量守恒定律:一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。
2.动量守恒定律的适用条件
(1)前提条件:存在相互作用的物体系;
(2)理想条件:系统不受外力;
(3)实际条件:系统所受合外力为0;
(4)近似条件:系统内各物体间相互作用的内力远大于系统所受的外力;
(5)方向条件:系统在某一方向上满足上面的条件,则此方向上动量守恒。
3.动量守恒定律的表达式
(1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和;
(2)Δp1=–Δp2,相互作用的两个物体动量的增量等大反向;
(3)Δp=0,系统总动量的增量为零。
4.动量守恒的速度具有“四性”:①矢量性;②瞬时性;③相对性;④普适性。
5.应用动量守恒定律解题的步骤:
(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);
(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);
(3)规定正方向,确定初、末状态动量;
(4)由动量守恒定律列出方程;
(5)代入数据,求出结果,必要时讨论说明。
三、碰撞与动量守恒定律
1.碰撞的特点
(1)作用时间极短,内力远大于外力,总动量总是守恒的。
(2)碰撞过程中,总动能不增。因为没有其他形式的能量转化为动能。
(3)碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大。
(4)碰撞过程中,两物体产生的位移可忽略。
2.碰撞的种类及遵从的规律
3.关于弹性碰撞的分析
两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律。
在光滑的水平面上,质量为m1的钢球沿一条直线以速度v0与静止在水平面上的质量为m2的钢球发生弹性碰撞,碰后的速度分别是v1、v2
①
②
由①②可得:③
④
利用③式和④式,可讨论以下五种特殊情况:
a.当时,,,两钢球沿原方向原方向运动;
b.当时,,,质量较小的钢球被反弹,质量较大的钢球向前运动;
c.当时,,,两钢球交换速度。
d.当时,,,m1很小时,几乎以原速率被反弹回来,而质量很大的m2几乎不动。例如橡皮球与墙壁的碰撞。
e.当时,,,说明m1很大时速度几乎不变,而质量很小的m2获得的速度是原来运动物体速度的2倍,这是原来静止的钢球通过碰撞可以获得的最大速度,例如铅球碰乒乓球。
4.一般的碰撞类问题的分析
(1)判定系统动量是否守恒。
(2)判定物理情景是否可行,如追碰后,前球动量不能减小,后球动量在原方向上不能增加;追碰后,后球在原方向的速度不可能大于前球的速度。
(3)判定碰撞前后动能是否不增加。
(建议用时:30分钟)
一、单选题
1. (2022·辽宁·鞍山市矿山高级中学三模)质量的物体在合外力F的作用下从静止开始做直线运动。物体所受的合外力F随时间t变化图像如图所示。下列说法正确的是( )
A.物体先做匀加速直线运动,再做加速度减小的减速运动
B.4s末物体的速度为零
C.6s内合外力的冲量为
D.6s内合外力做功为8J
2. (2022·四川· 模拟预测)如图,水平面上固定有间距为L 的两根平行光滑金属导轨P、Q。矩形区域EFGH内有一方向垂直导轨平面向上、感应强度大小为B的匀强磁场。在t= t1时刻,两均匀金属棒a、b分别从磁场边界EF、GH以相同速率v0进入磁场,一段时间后,t= t2时,流经a棒的电流为0,此时a、b棒仍位于磁场区域内。已知a、b由相同材料制成,长度均为L,电阻分别为R和2R(其他电阻不计),a棒的质量为m。在运动过程中两金属棒始终与导轨垂直且接触良好,a、b棒没有相碰,则 ( )
A.t1时刻a棒加速度大小为
B.t2时刻b棒的速度为0
C.t1~ t2时间内,a棒产生的焦耳热为
D.要使a、b不相碰,边界EF与GH的距离至少为
3. (2022·黑龙江·哈师大附中模拟预测)在匀强磁场中,一个静止的原子核发生了一次α衰变,放出一个α粒子,同时生成一个新核。两粒子在与磁场垂直的平面内做匀速圆周运动,α粒子的动能大小为E,动量大小为p。设该衰变过程释放的核能都转化为α粒子和的动能。下列说法正确的是( )
A.α粒子的轨迹与的轨迹为两个内切圆
B.将α粒子和的圆周运动等效成一个环形电流,电流大小分别为和,则和之比为13:10
C.的动量大小为
D.的动能大小为
4. (2022·河北·模拟预测)如图所示,A、B两个小球静止在光滑水平地面上,用轻弹簧连接,A、B两球的质量分别为0.4kg和1.2kg。现使A球获得向右的瞬时速度。已知弹簧始终在其弹性限度之内,则在A、B两球运动的过程中( )
A.B球的最大速度大小为1.5m/s
B.B球速度最大时,A球的速度大小为3m/s,方向水平向左
C.A球速度为0时,A、B组成的系统动能损失最大
D.A球加速度为0时,B球的速度最大
二、多选题
5.如图所示,质量均为m的物块A、B并排放置在光滑水平面上,一个质量也为m的物块C以初速度2v0在极短时间与A相碰并粘在一起。由于A、B的作用,A、B分离时B的速度等于v0,从C接触A到A、B分离的全过程中,下面说法正确的是( )
A.A、B分离时A的速度为
B.A、B分离时A的速度为
C.A、B、C组成的系统损失的机械能为
D.A、B、C组成的系统损失的机械能为
6. (2022·河南·一模)质量为1kg的物块在水平力F的作用下由静止开始在水平地面上做直线运动,F与时间t的关系如图所示。已知物块与地面间的动摩擦因数为0.1,最大静摩擦力大小与滑动摩擦力大小相等,重力加速度大小,则下列判断正确的是( )
A.0~2s内,F的冲量大小为
B.3s时物块的动量大小为
C.2s时物块的动能为零
D.2~4s内,F对物块所做的功为6J
三、解答题
7. (2022·江苏·高考真题)利用云室可以知道带电粒子的性质,如图所示,云室中存在磁感应强度大小为B的匀强磁场,一个质量为m、速度为v的电中性粒子在A点分裂成带等量异号电荷的粒子a和b,a、b在磁场中的径迹是两条相切的圆弧,相同时间内的径迹长度之比,半径之比,不计重力及粒子间的相互作用力,求:
(1)粒子a、b的质量之比;
(2)粒子a的动量大小。
8. (2022·天津河西·三模)一个小孩做推物块的游戏,如图所示,质量为m的小物块A放置在光滑水平面上,紧靠物块右端有一辆小车B,小孩蹲在小车上,小孩与车的总质量为6m,一起静止在光滑水平面上,物块A左侧紧挨着足够长的水平传送带MN,传送带的上表面与水平面在同一高度,传送带以速度v顺时针转动。游戏时,A被小孩以相对水平面的速度向左推出,一段时间后返回到传送带右端N,继续向右追上小孩后又立即被小孩以相对水平面的速度向左推出,如此反复,直至A追不上小孩为止。已知物块A与传送带MN间的动摩擦因数为,重力加速度为g。
(1)求物块第一次被推出后,小孩与车的速度大小;
(2)若传送带转动的速度,求物块被小孩第一次推出后到返回传送带右端N所用的时间。
种类
遵从的规律
弹性碰撞
动量守恒,机械能守恒
非弹性碰撞
动量守恒,机械能有损失
完全非弹性碰撞
动量守恒,机械能损失最大
重难点07 动量
动量观点是解决物理问题的三大观点之一。动量定理能计算合力的冲量或某一个力的冲量。动量守恒定律能解决动量守恒的很多物理问题,使复杂的问题简单化。特别像反冲、碰撞、爆炸等物理问题常常结合物理研究情境和生产、生活中的问题情境命题,多过程问题中经常结合动力学、能量、动量等多种观点解决问题。
例题1. (2022·北京·高考真题)“雪如意”是我国首座国际标准跳台滑雪场地。跳台滑雪运动中,裁判员主要根据运动员在空中的飞行距离和动作姿态评分。运动员在进行跳台滑雪时大致经过四个阶段:①助滑阶段,运动员两腿尽量深蹲,顺着助滑道的倾斜面下滑;②起跳阶段,当进入起跳区时,运动员两腿猛蹬滑道快速伸直,同时上体向前伸展;③飞行阶段,在空中运动员保持身体与雪板基本平行、两臂伸直贴放于身体两侧的姿态;④着陆阶段,运动员落地时两腿屈膝,两臂左右平伸。下列说法正确的是( )
A.助滑阶段,运动员深蹲是为了减小与滑道之间的摩擦力
B.起跳阶段,运动员猛蹬滑道主要是为了增加向上的速度
C.飞行阶段,运动员所采取的姿态是为了增加水平方向速度
D.着陆阶段,运动员两腿屈膝是为了减少与地面的作用时间
【答案】B
【解析】A.助滑阶段,运动员深蹲是为了减小与空气之间的摩擦力,A错误;
B.起跳阶段,运动员猛蹬滑道主要是通过增大滑道对人的作用力,根据动量定理可知,在相同时间内,为了增加向上的速度,B正确;
C.飞行阶段,运动员所采取的姿态是为了减小水平方向的阻力,从而减小水平方向的加速度,C错误;
D.着陆阶段,运动员两腿屈膝下蹲可以延长落地时间,根据动量定理可知,可以减少身体受到的平均冲击力,D错误。
故选B。
例题2. (2022·北京大兴精华学校三模)神舟十三号载人飞船的返回舱距地面10km时开始启动降落伞装置,速度减至10m/s,并以这个速度开始在大气中降落。在距地面1m时,返回舱的四台缓冲发动机开始竖直向下喷气,舱体再次减速。每次喷气时间极短,返回舱的质量和降落伞提供的阻力可以认为不变。
(1)设最后减速过程中返回舱做匀减速直线运动,并且到达地面时恰好速度为0,求:
a.最后减速阶段的加速度大小;
b.返回舱的总质量大约3吨,根据资料,返回舱发动机对地喷气速度约为3km/s,试估算每秒每个喷嘴喷出的气体质量。
(2)若返回舱总质量为M,当其以速度匀速下落过程中,开动喷气发动机开始竖直向下喷气,每次喷出气体的质量为m,则:
a.如果喷出气体相对地面的速度大小为v,喷气两次后返回舱的速度是多大?
b.如果喷出气体相对喷嘴的速度大小为v,喷气两次后返回舱的速度是多大?
【答案】(1)a.;b.;(2)a.;b.
【解析】(1)a.根据运动学公式可得
所以
加速度大小为50m/s2,负号表示加速度方向与初速度方向相反。
b.设每个喷气嘴获得的反冲力为F,单位时间每个喷出气体质量为,则
解得
(2)a.设两次喷气后返回舱速度大小为,由动量守恒定律可得
解得
b.第一次有
第二次有
所以联立解得
一、动量定理的应用
1.恒力:求Δp时,用Δp=Ft。
2.变力:求I时,用I=Δp=mv2-mv1。
3.Δp一定:Ft为确定值,F=eq \f(Δp,t),t小F大——如碰撞;t大F小——如缓冲。
4.矢量性:动量定理的表达式是矢量式,在一维情况下,各个矢量必须选取统一的正方向。
5.流体类:对于连续流体应用动量定理时,要确定小段时间Δt的连续体为研究对象,写出Δt内的质量Δm与Δt的关系式,分析连续Δm的受力情况和动量变化。
二、动量守恒定律的条件及应用
1.动量守恒定律:一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。
2.动量守恒定律的适用条件
(1)前提条件:存在相互作用的物体系;
(2)理想条件:系统不受外力;
(3)实际条件:系统所受合外力为0;
(4)近似条件:系统内各物体间相互作用的内力远大于系统所受的外力;
(5)方向条件:系统在某一方向上满足上面的条件,则此方向上动量守恒。
3.动量守恒定律的表达式
(1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和;
(2)Δp1=–Δp2,相互作用的两个物体动量的增量等大反向;
(3)Δp=0,系统总动量的增量为零。
4.动量守恒的速度具有“四性”:①矢量性;②瞬时性;③相对性;④普适性。
5.应用动量守恒定律解题的步骤:
(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);
(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);
(3)规定正方向,确定初、末状态动量;
(4)由动量守恒定律列出方程;
(5)代入数据,求出结果,必要时讨论说明。
三、碰撞与动量守恒定律
1.碰撞的特点
(1)作用时间极短,内力远大于外力,总动量总是守恒的。
(2)碰撞过程中,总动能不增。因为没有其他形式的能量转化为动能。
(3)碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大。
(4)碰撞过程中,两物体产生的位移可忽略。
2.碰撞的种类及遵从的规律
3.关于弹性碰撞的分析
两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律。
在光滑的水平面上,质量为m1的钢球沿一条直线以速度v0与静止在水平面上的质量为m2的钢球发生弹性碰撞,碰后的速度分别是v1、v2
①
②
由①②可得:③
④
利用③式和④式,可讨论以下五种特殊情况:
a.当时,,,两钢球沿原方向原方向运动;
b.当时,,,质量较小的钢球被反弹,质量较大的钢球向前运动;
c.当时,,,两钢球交换速度。
d.当时,,,m1很小时,几乎以原速率被反弹回来,而质量很大的m2几乎不动。例如橡皮球与墙壁的碰撞。
e.当时,,,说明m1很大时速度几乎不变,而质量很小的m2获得的速度是原来运动物体速度的2倍,这是原来静止的钢球通过碰撞可以获得的最大速度,例如铅球碰乒乓球。
4.一般的碰撞类问题的分析
(1)判定系统动量是否守恒。
(2)判定物理情景是否可行,如追碰后,前球动量不能减小,后球动量在原方向上不能增加;追碰后,后球在原方向的速度不可能大于前球的速度。
(3)判定碰撞前后动能是否不增加。
(建议用时:30分钟)
一、单选题
1. (2022·辽宁·鞍山市矿山高级中学三模)质量的物体在合外力F的作用下从静止开始做直线运动。物体所受的合外力F随时间t变化图像如图所示。下列说法正确的是( )
A.物体先做匀加速直线运动,再做加速度减小的减速运动
B.4s末物体的速度为零
C.6s内合外力的冲量为
D.6s内合外力做功为8J
【答案】C
【解析】A.由图可知,合力方向不变,则物体先做匀加速直线运动,再做加速度减小的加速度运动,最后做加速度增大的减速运动,故A错误;
B.由动量定理可知,合外力冲量等于物体动量的变化,物体从静止开始运动,有
在图像中,合外力的冲量即为所围成图形的面积,有
解得
故B错误;
C.图像与坐标轴所围面积表示合力的冲量,合力冲量为
合力的冲量为0,则6s内合外力的冲量为,故C正确;
D.由动量定理可得
即
此时的动能为
由于合力的冲量为0,即动量不变,则动能也不变,所以6s内合外力做功为4J,故D错误。
故选C。
2. (2022·四川· 模拟预测)如图,水平面上固定有间距为L 的两根平行光滑金属导轨P、Q。矩形区域EFGH内有一方向垂直导轨平面向上、感应强度大小为B的匀强磁场。在t= t1时刻,两均匀金属棒a、b分别从磁场边界EF、GH以相同速率v0进入磁场,一段时间后,t= t2时,流经a棒的电流为0,此时a、b棒仍位于磁场区域内。已知a、b由相同材料制成,长度均为L,电阻分别为R和2R(其他电阻不计),a棒的质量为m。在运动过程中两金属棒始终与导轨垂直且接触良好,a、b棒没有相碰,则 ( )
A.t1时刻a棒加速度大小为
B.t2时刻b棒的速度为0
C.t1~ t2时间内,a棒产生的焦耳热为
D.要使a、b不相碰,边界EF与GH的距离至少为
【答案】A
【解析】A.由右手定则可知,a、b棒在磁场中运动产生的感应电流方向是逆时针方向,则回路中的电动势为两棒产生的电动势之和,在t= t1时刻,即为
E=2BLv0
对a棒,由牛顿第二定律可得
BIL=ma
A正确;
B.由题意可知,金属棒a、b的电阻率相同,长度相同,电阻分别为R和2R,由电阻定律可得
长度相同,可知a的体积是b的2倍,密度相同,则a的质量是b的2倍,即b的质量为。金属棒a、b在磁场中时,流经的电流等大反向,所受安培力等大反向,a、b组成的系统所受合外力等于零,则有该系统动量守恒,在t= t2时,流经a棒的电流是0,则有a、b棒之间的磁通量不变,因此两者的速度相同,设为v,取水平向右为正方向,由动量守恒定律可得
解得
即t2时刻b棒的速度为,B错误;
C. t1~ t2时间内,对 a、b组成的系统,由能量守恒定律可得
解得t1~ t2时间内,a棒产生的焦耳热为
C错误;
D.由题意可知,b棒的质量小,加速度大,在向左运动中,速度减小的快,速度减到零后,开始向右做加速运动,a棒继续向右做减速运动,当两棒速度相等且不相碰,此时两棒的距离最近,两棒速度均为,设两棒开始运动到两棒速度相等,两棒的位移大小之和为x,由电磁感应定律,则有
金属棒受安培力的平均值为
对a棒由动量定理可得
解得要使a、b不相碰,边界EF与GH的距离至少为
D错误。
故选A。
3. (2022·黑龙江·哈师大附中模拟预测)在匀强磁场中,一个静止的原子核发生了一次α衰变,放出一个α粒子,同时生成一个新核。两粒子在与磁场垂直的平面内做匀速圆周运动,α粒子的动能大小为E,动量大小为p。设该衰变过程释放的核能都转化为α粒子和的动能。下列说法正确的是( )
A.α粒子的轨迹与的轨迹为两个内切圆
B.将α粒子和的圆周运动等效成一个环形电流,电流大小分别为和,则和之比为13:10
C.的动量大小为
D.的动能大小为
【答案】D
【解析】A.该衰变过程动量守恒,故两粒子动量等大、反向,由左手定则受力分析可知,α粒子的轨迹与的轨迹为两个外切圆,A错误;
B.粒子在磁场中做圆周运动
解得
故周期为
等效电流为
故α粒子和核的等效电流比为
B错误;
C.由动量守恒可知,核与α粒子动量等大反向,故的动量大小也为p,C错误;
D.设α粒子质量为,电量为,速率为。核质量为,电量为,速率为,由动量守恒
故
故α粒子的动能可表示为
核的动能可表示为
联立可得
D正确。
故选D。
4. (2022·河北·模拟预测)如图所示,A、B两个小球静止在光滑水平地面上,用轻弹簧连接,A、B两球的质量分别为0.4kg和1.2kg。现使A球获得向右的瞬时速度。已知弹簧始终在其弹性限度之内,则在A、B两球运动的过程中( )
A.B球的最大速度大小为1.5m/s
B.B球速度最大时,A球的速度大小为3m/s,方向水平向左
C.A球速度为0时,A、B组成的系统动能损失最大
D.A球加速度为0时,B球的速度最大
【答案】B
【解析】AB.当B球速度最大时,弹簧处于原长,以向右为正方向,设此时A、B速度为v1、v2,由动量守恒和机械能守恒有
解得
v1=-3m/s,v2=3m/s
A错误,B正确;
C.由能量守恒可知,A、B组成的系统动能损失最大时,弹簧弹性势能达到最大值,此时A、B速度相同,设为,由动量守恒
解得
C错误;
D.A球加速度为0时,弹簧处于原长,当弹簧从压缩状态逐渐恢复原长过程中,B球的速度逐渐增大,弹簧恢复原长时B速度达到最大;当弹簧从伸长状态逐渐恢复原长过程中,B球的速度逐渐减小,弹簧恢复原长时B速度达到最小值,D错误。
故选B。
二、多选题
5.如图所示,质量均为m的物块A、B并排放置在光滑水平面上,一个质量也为m的物块C以初速度2v0在极短时间与A相碰并粘在一起。由于A、B的作用,A、B分离时B的速度等于v0,从C接触A到A、B分离的全过程中,下面说法正确的是( )
A.A、B分离时A的速度为
B.A、B分离时A的速度为
C.A、B、C组成的系统损失的机械能为
D.A、B、C组成的系统损失的机械能为
【答案】 BD
【解析】
AB.该过程动量守恒,有
解得
A错误,B正确;
CD.A、B、C组成的系统损失的机械能为
C错误,D正确。
故选BD。
6. (2022·河南·一模)质量为1kg的物块在水平力F的作用下由静止开始在水平地面上做直线运动,F与时间t的关系如图所示。已知物块与地面间的动摩擦因数为0.1,最大静摩擦力大小与滑动摩擦力大小相等,重力加速度大小,则下列判断正确的是( )
A.0~2s内,F的冲量大小为
B.3s时物块的动量大小为
C.2s时物块的动能为零
D.2~4s内,F对物块所做的功为6J
【答案】ABD
【解析】A.F-t图像的面积表示力F的冲量,由图可知,0~2s内,F的冲量为
故A正确;
B.由于最大静摩擦力为
所以0~1s内物块一直处于静止状态,故0~3s内动量变化与1~3s内动量变化相同,根据动量定理有
解得
故B正确;
C.0~2s内,根据动量定理有
解得
所以2s时物块动能为
故C错误;
D.2~4s,物块做匀加速直线运动,根据牛顿第二定律
所以F做的功为
故D正确。
故选ABD。
三、解答题
7. (2022·江苏·高考真题)利用云室可以知道带电粒子的性质,如图所示,云室中存在磁感应强度大小为B的匀强磁场,一个质量为m、速度为v的电中性粒子在A点分裂成带等量异号电荷的粒子a和b,a、b在磁场中的径迹是两条相切的圆弧,相同时间内的径迹长度之比,半径之比,不计重力及粒子间的相互作用力,求:
(1)粒子a、b的质量之比;
(2)粒子a的动量大小。
【答案】(1);(2)
【解析】(1)分裂后带电粒子在磁场中偏转做匀速圆周运动,洛伦兹力提供向心力,则有
解得
由题干知半径之比,故
因为相同时间内的径迹长度之比,则分裂后粒子在磁场中的速度为
联立解得
(2)中性粒子在A点分裂成带等量异号电荷的粒子a和b,分裂过程中,没有外力作用,动量守恒,根据动量守恒定律
因为分裂后动量关系为,联立解得
8. (2022·天津河西·三模)一个小孩做推物块的游戏,如图所示,质量为m的小物块A放置在光滑水平面上,紧靠物块右端有一辆小车B,小孩蹲在小车上,小孩与车的总质量为6m,一起静止在光滑水平面上,物块A左侧紧挨着足够长的水平传送带MN,传送带的上表面与水平面在同一高度,传送带以速度v顺时针转动。游戏时,A被小孩以相对水平面的速度向左推出,一段时间后返回到传送带右端N,继续向右追上小孩后又立即被小孩以相对水平面的速度向左推出,如此反复,直至A追不上小孩为止。已知物块A与传送带MN间的动摩擦因数为,重力加速度为g。
(1)求物块第一次被推出后,小孩与车的速度大小;
(2)若传送带转动的速度,求物块被小孩第一次推出后到返回传送带右端N所用的时间。
【答案】(1);(2)
【解析】(1)地面光滑,物块A与小孩、车组成的系统动量守恒,以向右为正方向,则有
解得
(2)物块被小孩第一次推出到与传送带共速期间物块的受力如图所示
该过程中物块的加速度为,则有
解得
物块被小孩第一次推出到与传送带共速所用时间为,对地位移为
解得
物块与传送带共速之后将以的速度匀速运动至,匀速运动用时
物块被小孩第一次推出后到返回传送带右端N所用的时间为
种类
遵从的规律
弹性碰撞
动量守恒,机械能守恒
非弹性碰撞
动量守恒,机械能有损失
完全非弹性碰撞
动量守恒,机械能损失最大
重难点07 动量-2024年高考物理【热点·重点·难点】专练(新高考专用): 这是一份重难点07 动量-2024年高考物理【热点·重点·难点】专练(新高考专用),文件包含重难点07动量原卷版docx、重难点07动量解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
高考物理【热点重点难点】专练(全国通用)重难点12电磁感应(原卷版+解析): 这是一份高考物理【热点重点难点】专练(全国通用)重难点12电磁感应(原卷版+解析),共22页。试卷主要包含了1 m、总电阻为0等内容,欢迎下载使用。
高考物理【热点重点难点】专练(全国通用)重难点11直流电路和交流电路(原卷版+解析): 这是一份高考物理【热点重点难点】专练(全国通用)重难点11直流电路和交流电路(原卷版+解析),共23页。试卷主要包含了解决最大功率问题的两点注意,电路中常见的图像分析,5WD.电动机线圈的电阻为,25 A.下列判断正确的是等内容,欢迎下载使用。