第六章 第六课时 专题强化:动力学和能量观点的综合应用2025版高考物理一轮复习课件+测试(教师版)+测试(学生版)
展开专题强化:动力学和能量观点的综合应用
考点一 传送带模型综合问题
考点二 滑块—木板模型综合问题
考点三 用动力学和能量观点分析多运动组合问题
1.传送带问题的分析方法(1)动力学角度:首先要正确分析物体的运动过程,做好受力分析,然后利用运动学公式结合牛顿第二定律求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系。(2)能量角度:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等,常依据功能关系或能量守恒定律求解。(3)注意:当物体与传送带速度相同时,摩擦力往往发生突变。
2.传送带问题涉及的功能关系(1)传送带克服摩擦力做的功:W=Ffx传。(2)系统产生的内能:Q=Ffx相对。(3)功能关系分析:W=ΔEk+ΔEp+Q。
例1 (2023·江苏省海安实验中学检测)某快递公司分拣快件的水平传输装置示意图如图,皮带在电动机的带动下保持v=1 m/s的恒定速度顺时针转动,现将一质量为m=2 kg的邮件轻放在皮带上,邮件和皮带间的动摩擦因数μ=0.5,设皮带足够长,取g=10 m/s2,在邮件与皮带发生相对滑动的过程中A.皮带对邮件的摩擦力和邮件对皮带的摩擦力是一对平衡力B.皮带对邮件做的功和邮件对皮带做的功大小相等C.相比于没有邮件的情况,电动机多消耗的电能为2 JD.相比于没有邮件的情况,电动机多消耗的电能为1 J
例2 (2024·江苏南通市期末)如图所示,一个工作台由水平传送带与倾角θ=37°、足够长的斜面体组成,传送带AB间的长度L=1.7 m,传送带顺时针匀速转动。现让质量m=1 kg的小物块以某水平向右的速度从A点滑上传送带,恰好能滑到斜面上高度h=1.08 m的C点,物块与斜面体、传送带之间的动摩擦因数均为μ=0.5,传送带与斜面平滑连接,取g=10 m/s2,sin 37°=0.6,cs 37°=0.8。
(1)求物块由A运动到B时的速度大小vB;
(2)若改变传送带转速,物块从A点水平滑上传送带,滑上斜面后恰好能返回出发点A,求物块从A点滑上传送带时初动能的最小值Ekmin。
滑块—木板模型综合问题
“滑块—木板”问题的分析方法1.动力学分析:分别对滑块和木板进行受力分析,根据牛顿第二定律求出各自的加速度;从放上滑块到二者速度相等,所用时间相等,由t= 可求出共同速度v和所用时间t,然后由位移公式可分别求出二者的位移。
2.功和能分析:对滑块和木板分别运用动能定理,或者对系统运用能量守恒定律。如图所示,要注意区分三个位移:(1)求摩擦力对滑块做功时用滑块对地的位移x滑;(2)求摩擦力对木板做功时用木板对地的位移x板;(3)求摩擦生热时用相对位移Δx。
例3 如图所示,质量m1=1 kg的木板Q静止在水平地面上,质量m2=3 kg的物块P在木板左端,P与Q之间的动摩擦因数μ1=0.2,地面与Q之间的动摩擦因数μ2=0.1,现给物块P以v0=4 m/s的初速度使其在木板上向右滑动,最终P和Q都静止且P没有滑离木板Q,重力加速度g取10 m/s2,下列说法正确的是A.P与Q开始相对静止的速度是2.5 m/sB.长木板Q长度至少为3 mC.P与Q之间产生热量和地面与Q之间产生的热量之比为1∶1D.P与Q之间产生的热量和地面与Q之间产生的热量之比为2∶1
两者共速时有v共=v0+aPt=aQt,解得t=1 s,v共=2 m/s,选项A错误;
之后不发生相对滑动,故长木板Q长度至少为2 m,选项B错误;P与Q之间产生的热量为Q1=μ1m2gΔx=12 J
由能量守恒定律得,地面与Q之间产生的热量为Q2= m2v02-Q1=12 J,P与Q之间产生的热量与地面与Q之间产生的热量之比为1∶1,选项C正确,D错误。
例4 如图所示,有一个可视为质点的质量为m=1 kg的小物块,从光滑平台上的A点以v0=3 m/s的初速度水平抛出,到达C点时,恰好沿C点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D点的质量为M=3 kg的长木板。已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑接触,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R=0.5 m,C点和圆弧的圆心连线与竖直方向的夹角θ=53°,不计空气阻力,取重力加速度g=10 m/s2,sin 53°=0.8,cs 53°=0.6。求:
(1)A、C两点的高度差;
(2)小物块在圆弧轨道末端D点时对轨道的压力;
答案 68 N,方向竖直向下
小物块由C到D的过程中,由动能定理可得
代入数据解得FN=68 N根据牛顿第三定律可知,小物块在圆弧轨道末端D点时对轨道的压力大小为68 N,方向竖直向下。
(3)要使小物块不滑出长木板,木板的最小长度。
设小物块刚滑到木板右端时,与木板达到共同速度v,小物块在木板上滑行的过程中,小物块与长木板的加速度大小分别为a1=μg=3 m/s2,
共速时有v=vD-a1t,v=a2t
对物块和木板组成的系统,由能量守恒定律得
解得L=3.625 m,即木板的最小长度为3.625 m。
用动力学和能量观点分析多运动组合问题
例5 (2024·江苏盐城市东台中学校考)如图所示,质量m=3 kg的小物块以初速度v0=4 m/s水平向右抛出,恰好从A点沿着圆弧的切线方向进入圆弧轨道,圆弧轨道的半径为R=3.75 m,B点是圆弧轨道的最低点,圆弧轨道与水平轨道BD平滑连接,A与圆心O的连线与竖直方向成37°角。MN是一段粗糙的水平轨道,小物块与MN间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r=0.4 m的半圆轨道,C点是圆弧轨道的最高点,半圆轨道与水平轨道BD在D点平滑连接。不计空气阻力,已知重力加速度g=10 m/s2,sin 37°=0.6,cs 37°=0.8。
(1)求小物块的抛出点离A点的高度h;
物块做平抛运动时,根据平抛运动的规律有v0=vAcs 37°
竖直方向vy=vAsin 37°=gt解得t=0.3 s
(2)若MN的长度为L=6 m,求小物块通过C点时所受轨道弹力的大小FN;
小物块从A点运动到C点,根据动能定理有
代入数据解得FN=60 N
(3)若小物块能到达D点且在DC之间不脱离轨道,求MN的长度L′。
答案 16 m≤L′≤20 m或者L′≤10 m
要想小物块不脱离轨道,则有两种情况,第一种:当物块能经过最高点C且刚好能通过C点时,
解得vC′=2 m/s小物块从A点运动到C点的过程中,根据动能定理有
解得L′=10 m第二种:当小物块恰能到达与圆心等高的位置时,
解得L2=20 m则小物块能到达D点且在DC之间不脱离轨道,MN的长度满足16 m≤L′≤20 m或者L′≤10 m。
1.分析思路(1)受力与运动分析:根据物体的运动过程分析物体的受力情况,以及不同运动过程中力的变化情况;(2)做功分析:根据各种力做功的不同特点,分析各种力在不同运动过程中的做功情况;(3)功能关系分析:运用动能定理、机械能守恒定律或能量守恒定律进行分析,选择合适的规律求解。
2.方法技巧(1)“合”——整体上把握全过程,构建大致的运动情景;(2)“分”——将全过程进行分解,分析每个子过程对应的基本规律;(3)“合”——找出各子过程之间的联系,以衔接点为突破口,寻求解题最优方案。
训练1 用动力学和能量观点分析传送带模型和滑块—木板模型
训练2 用动力学和能量观点分析多运动组合问题
1.(2024·江苏扬州市仪征中学开学考)如图所示为速冻食品加工厂生产和包装饺子的一道工序。将饺子轻放在匀速运转的足够长的水平传送带上,不考虑饺子之间的相互作用和空气阻力。关于饺子在水平传送带上的运动,下列说法正确的是A.饺子一直做匀加速运动B.传送带的速度越快,饺子的加速度越大C.饺子从静止开始加速到与传送带速度相 等的过程中,增加的动能等于因摩擦产 生的热量D.传送带多消耗的电能等于饺子增加的动能
2.如图所示,一足够长的木板在光滑的水平面上以速度v向右匀速运动,现将质量为m的物体轻轻地放置在木板上的右端,已知物体与木板之间的动摩擦因数为μ,为保持木板的速度不变,从物体放到木板上到物体相对木板静止的过程中,须对木板施加一水平向右的作用力F,则力F对木板所做的功为
3.(2023·江苏南通市开学考)如图所示,倾角为θ的足够长倾斜传送带沿逆时针方向以恒定速度运行。一物块无初速度地放在传送带上端,传送带与物块间的动摩擦因数μ
小物块第一次从A点运动至P点时,根据动能定理有
(2)物块第一次从P点冲上传送带到沿传送带运动到最远处的过程中,电动机因传送物块多做的功;
物块沿传送带运动到最远处所用的时间
物块与传送带间相对位移大小为Δx=x1+vt=12.8 m+4×3.2 m=25.6 m
物块在传送带上运动的加速度大小为a=μg=2.5 m/s2物块沿传送带运动到最远处的位移为
摩擦产生的热量为Q=FfΔx=μmgΔx=0.25×2×10×25.6 J=128 J根据能量守恒,电动机因传送物块多做的功为
设从释放到最终停止运动,小物块在斜面上运动的总路程为s,经过多次往返后,小物块最终停在斜面底端。除第一次返回斜面外,其余每次在传送带上往返运动时过程都具有对称性,从第一次返回斜面到最终停止运动,根据能量守恒定律可得
(3)从释放到最终停止运动,小物块在斜面上运动的总路程。
5.(2024·江苏镇江市期中)如图所示,倾角θ=37°的光滑斜面固定在水平地面上,B是质量mB=0.2 kg、长度L=18 m的薄木板,A是质量mA=0.1 kg的滑块(可视为质点)。初始状态时,薄木板下端Q距斜面底端距离s=15 m,现将B由静止释放,同时滑块A以速度v0=6 m/s从木板上端P点沿斜面向下冲上薄木板。已知A、B间的动摩擦因数μ=0.5,最大静摩擦力等于滑动摩擦力,重力加速度g=10 m/s2,sin 37°=0.6,cs 37°=0.8,求:
开始运动时A的加速度大小
(1)刚开始运动时,A、B加速度的大小;
答案 2 m/s2 8 m/s2
(2)从开始运动到薄木板B的下端Q到达斜面底端的过程所经历的时间;
当两者达到共速时v=v0+aAt1=aBt1解得t1=1 sv=8 m/s
此后A、B一起沿斜面向下运动,加速度大小为a=gsin 37°=6 m/s2
解得t2=1 s则从开始运动到薄木板B的下端Q到达斜面底端的过程所经历的时间t=t1+t2=2 s
该过程中系统产生的热量Q=μmAgcs 37°(xA-xB)=1.2 J从开始运动到薄木板B的下端Q到达斜面底端的过程系统损失的机械能为1.2 J。
(3)从开始运动到薄木板B的下端Q到达斜面底端的过程系统损失的机械能。
6.(2024·江苏扬州市期中)如图所示,固定的光滑 圆弧轨道A的半径R=1.8 m,质量mB=3 kg、长L=3.4 m的木板B紧靠A放置在水平地面上,B与地面间的动摩擦因数μ1=0.1,水平向右的恒力F=2 N始终作用在B上。质量mC=1 kg的小滑块C从A顶端由静止滑下,B、C间的动摩擦因数μ2=0.5。已知最大静摩擦力等于滑动摩擦力,g=10 m/s2,求:(1)C滑到A的底端时的速度大小v0;
(2)通过计算判断C能否从B的右端滑出;
(3)整个装置因摩擦产生的热量Q。
1.(2023·江苏扬州市阶段练习)如图所示,光滑斜面AB与水平传送带BC平滑连接,BC长L=4.5 m,与物块间的动摩擦因数μ=0.3,传送带顺时针转动的速度v=3 m/s。设质量m=2 kg的物块由静止开始从A点下滑,经过C点后水平抛出,恰好沿圆弧切线从D点进入竖直光滑圆弧轨道DOE,DE连线水平。已知圆弧半径R=2.0 m,对应圆心角θ=106°,物块运动到O点时对轨道的压力为61 N。g=10 m/s2,sin 37°=0.6,cs 37°=0.8,求:
(1)物块运动到D点的速度大小vD;
(2)物块下落的最大高度H;
(3)第(2)问中,物块与传送带间产生的热量Q。
2.(2023·江苏淮安市期中)如图所示,长木板B放置在光滑水平面上,滑块A在长木板B的左端,木板右端距固定平台距离s=0.6 m,木板上表面与光滑平台等高,平台上固定半径R=0.3 m的光滑半圆轨道CD,轨道末端与平台相切。滑块与木板上表面间的动摩擦因数μ=0.5,滑块质量m=0.4 kg,木板质量M=0.1 kg,某时刻,滑块获得一个向右的初速度v0=5 m/s,不计空气阻力,重力加速度g取10 m/s2,求:
(1)滑块刚开始滑动时,滑块和木板的加速度大小;
答案 5 m/s2 20 m/s2
对滑块A,由牛顿第二定律有Ff1=μmg=ma1对木板B,由牛顿第二定律有μmg=Ma2代入数据解得a1=5 m/s2,a2=20 m/s2
(2)若木板与平台碰撞前滑块没有滑离木板,木板与平台碰撞前的速度多大;
假设木板与平台碰撞前已经与滑块共速(设速度为v1),设经时间t1,两者共速,则有v1=v0-a1t1=a2t1解得t1=0.2 s,v1=4 m/s
故假设成立,木板和平台碰撞前的速度为v1=4 m/s
(3)若木板与平台碰撞瞬间即与平台粘合在一起,要使滑块能到达半圆轨道的最高点,木板的长度范围是多少。
答案 0.5 m≤L≤0.6 m
在时间t1内滑块A运动的位移为
此时滑块A相对木板B滑动的位移为Δx1=x2-x1=0.9 m-0.4 m=0.5 m滑块恰能到达半圆轨道的最高点,
从木板与平台碰撞后,设滑块在木板上滑动的距离为x3,滑块从木板与平台碰后到运动到半圆轨道的最高点过程中,由动能定理有
解得x3=0.1 m木板的长度最长为L=Δx1+x3=0.5 m+0.1 m=0.6 m为满足题意,木板的长度范围为0.5 m≤L≤0.6 m
3.如图所示,倾角θ=37°的斜面AB通过平滑的小圆弧与水平直轨道BC连接,CD、DE为两段竖直放置的四分之一圆管,两管相切于D处,半径均为R=0.15 m。右侧有一倾角α=30°的光滑斜面PQ固定在水平地面上。质量为m=0.4 kg、可视为质点的小物块从斜面AB顶端由静止释放,经ABCDE轨道从E处水平飞出后,恰能从P点平行PQ方向飞入斜面。小物块经过C点时受到圆管的作用力大小为28 N,小物块与斜面AB的动摩擦因数μ1=0.375,与BCDE段之间的摩擦不计,重力加速度g取10 m/s2,sin 37°=0.6,cs 37°=0.8。
(1)求斜面AB的长度;
(2)求E点与P点的竖直距离;
(3)若斜面PQ上距离P点L2=0.2 m的M点下方有一段长度可调的粗糙部分MN,其调节范围为0.2 m≤L≤0.5 m,与小物块间的动摩擦因数μ2=斜面底端固定一轻质弹簧,弹簧始终在弹性限度内,且不与粗糙部分MN重叠,求小物块在MN段上运动的总路程s与MN长度L的关系式。
2024届高考物理一轮复习(新教材鲁科版)第六章机械能守恒定律专题强化九动力学和能量观点的综合应用课件: 这是一份2024届高考物理一轮复习(新教材鲁科版)第六章机械能守恒定律专题强化九动力学和能量观点的综合应用课件,共60页。PPT课件主要包含了题型一传送带模型,传送带模型,答案230J,滑块木板模型,多运动组合问题,答案50N,答案6J,答案12m,课时精练,基础落实练等内容,欢迎下载使用。
2024年高考物理一轮复习(新人教版) 第6章 专题强化9 动力学和能量观点的综合应用: 这是一份2024年高考物理一轮复习(新人教版) 第6章 专题强化9 动力学和能量观点的综合应用,文件包含2024年高考物理一轮复习新人教版第6章专题强化9动力学和能量观点的综合应用pptx、2024年高考物理一轮复习新人教版第6章专题强化9动力学和能量观点的综合应用docx、第6章专题强化练9动力学和能量观点的综合应用docx等3份课件配套教学资源,其中PPT共60页, 欢迎下载使用。
第六章 第5讲 动力学和能量观点的综合应用-2024年高考物理一轮复习核心考点精梳细讲课件: 这是一份第六章 第5讲 动力学和能量观点的综合应用-2024年高考物理一轮复习核心考点精梳细讲课件,共29页。PPT课件主要包含了传送带模型,2x物,fx物,f∆xQ,x皮-x物,fx皮,f2x物,W皮克,EK+Q,EK+Q+EP等内容,欢迎下载使用。