2024年中考真题:上海市数学试题
展开
这是一份2024年中考真题:上海市数学试题,共8页。
2.作答前,请在答题纸指定位置填写姓名、报名号、座位号.井将核对后的条形码贴在答题纸指定位置.
3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.
4.用2B铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.
一、选择题(每题4分,共24分)
1. 如果,那么下列正确的是( )
A. B. C. D.
2. 函数的定义域是( )
A. B. C. D.
3. 以下一元二次方程有两个相等实数根的是( )
A. B.
C. D.
4. 科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.
A. 甲种类B. 乙种类C. 丙种类D. 丁种类
5. 四边形为矩形,过作对角线的垂线,过作对角线的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )
A. 菱形B. 矩形C. 直角梯形D. 等腰梯形
6. 在中,,,,点在内,分别以为圆心画,圆半径为1,圆半径为2,圆半径为3,圆与圆内切,圆与圆的关系是( )
A. 内含B. 相交C. 外切D. 相离
二、填空题(每题4分,共48分)
7. 计算:___________.
8. 计算______.
9. 已知,则___________.
10. 科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为,一张普通唱片的容量约为25,则蓝光唱片的容量是普通唱片的___________倍.(用科学记数法表示)
11. 若正比例函数的图像经过点,则y的值随x的增大而___________.(选填“增大”或“减小”)
12. 在菱形中,,则___________.
13. 某种商品的销售量y(万元)与广告投入x(万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为___________万元.
14. 一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是,则袋子中至少有___________个绿球.
15. 如图,在平行四边形中,E为对角线上一点,设,,若,则___________(结果用含,的式子表示).
16. 博物馆为展品准备了人工讲解、语音播报和增强三种讲解方式,博物馆共回收有效问卷张,其中人没有讲解需求,剩余人中需求情况如图所示(一人可以选择多种),那么在总共万人参观中,需要增强讲解的人数约有__________人.
17. 在平行四边形中,锐角,将沿直线翻折至所在直线,对应点分别为,,若,则__________.
18. 对于一个二次函数()中存在一点,使得,则称为该抛物线的“开口大小”,那么抛物线“开口大小”为__________.
三、简答题(共78分,其中第19-22题每题10分,第23、24题每题12分,第25题14分)
19. 计算:.
20. 解方程组:.
21. 在平面直角坐标系中,反比例函数(k常数且)上有一点,且与直线交于另一点.
(1)求k与m的值;
(2)过点A作直线轴与直线交于点C,求的值.
22. 同学用两幅三角板拼出了如下的平行四边形,且内部留白部分也是平行四边形(直角三角板互不重叠),直角三角形斜边上的高都为.
(1)求:
两个直角三角形的直角边(结果用表示);
小平行四边形的底、高和面积(结果用表示);
(2)请画出同学拼出的另一种符合题意的图,要求:
不与给定的图形状相同;
画出三角形的边.
23. 如图所示,在矩形中,为边上一点,且.
(1)求证:;
(2)为线段延长线上一点,且满足,求证:.
24. 在平面直角坐标系中,已知平移抛物线后得到的新抛物线经过和.
(1)求平移后新抛物线的表达式;
(2)直线()与新抛物线交于点P,与原抛物线交于点Q.
①如果小于3,求m的取值范围;
②记点P在原抛物线上的对应点为,如果四边形有一组对边平行,求点P的坐标.
25. 在梯形中,,点E在边上,且.
(1)如图1所示,点F在边上,且,联结,求证:;
(2)已知;
①如图2所示,联结,如果外接圆的心恰好落在的平分线上,求的外接圆的半径长;
②如图3所示,如果点M在边上,联结、、,与交于N,如果,且,,求边的长.
2024年上海市初中学业水平考试
数学试卷
1.本场考试时间100分钟,试卷共4页,满分150分,答题纸共2页.
2.作答前,请在答题纸指定位置填写姓名、报名号、座位号.井将核对后的条形码贴在答题纸指定位置.
3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.
4.用2B铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.
一、选择题(每题4分,共24分)
【1题答案】
【答案】C
【2题答案】
【答案】D
【3题答案】
【答案】D
【4题答案】
【答案】B
【5题答案】
【答案】A
【6题答案】
【答案】B
二、填空题(每题4分,共48分)
【7题答案】
【答案】
【8题答案】
【答案】
【9题答案】
【答案】1
【10题答案】
【答案】
【11题答案】
【答案】减小
【12题答案】
【答案】##57度
【13题答案】
【答案】4500
【14题答案】
【答案】3
【15题答案】
【答案】
【16题答案】
【答案】
【17题答案】
【答案】或##或
【18题答案】
【答案】4
三、简答题(共78分,其中第19-22题每题10分,第23、24题每题12分,第25题14分)
【19题答案】
【答案】
【20题答案】
【答案】,或者,.
【21题答案】
【答案】(1),;
(2).
【22题答案】
【答案】(1)等腰直角三角板直角边为,含直角三角形板直角边为和;底为,高为,面积为;
(2)画图见解析.
【23题答案】
【答案】(1)证明见解析
(2)证明见解析
【24题答案】
【答案】(1)或;
(2)①;②.
【25题答案】
【答案】(1)见详解 (2)①;②
种类
甲种类
乙种类
丙种类
丁种类
平均数
23
2.3
2.8
3.1
方差
1.05
0.78
1.05
0.78
相关试卷
这是一份2024年中考真题:上海市数学试题,共5页。
这是一份2023年上海市中考数学真题,文件包含精品解析上海市中考数学真题原卷版docx、精品解析上海市中考数学真题解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
这是一份2023年上海市中考数学真题,文件包含精品解析上海市中考数学真题原卷版docx、精品解析上海市中考数学真题解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。