2024年高考数学真题分类汇编04:数列
展开这是一份2024年高考数学真题分类汇编04:数列,共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
1.(2024·全国)等差数列的前项和为,若,( )
A.B.C.1D.
2.(2024·全国)等差数列的前项和为,若,,则( )
A.B.C.1D.2
二、填空题
3.(2024·全国)记为等差数列的前n项和,若,,则 .
4.(2024·北京)已知,,不为常数列且各项均不相同,下列正确的是 .
①,均为等差数列,则M中最多一个元素;
②,均为等比数列,则M中最多三个元素;
③为等差数列,为等比数列,则M中最多三个元素;
④单调递增,单调递减,则M中最多一个元素.
5.(2024·上海)无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是 .
三、解答题
6.(2024·全国)设m为正整数,数列是公差不为0的等差数列,若从中删去两项和后剩余的项可被平均分为组,且每组的4个数都能构成等差数列,则称数列是可分数列.
(1)写出所有的,,使数列是可分数列;
(2)当时,证明:数列是可分数列;
(3)从中一次任取两个数和,记数列是可分数列的概率为,证明:.
7.(2024·全国)已知双曲线,点在上,为常数,.按照如下方式依次构造点,过作斜率为的直线与的左支交于点,令为关于轴的对称点,记的坐标为.
(1)若,求;
(2)证明:数列是公比为的等比数列;
(3)设为的面积,证明:对任意的正整数,.
8.(2024·全国)已知等比数列的前项和为,且.
(1)求的通项公式;
(2)求数列的通项公式.
9.(2024·全国)记为数列的前项和,且.
(1)求的通项公式;
(2)设,求数列的前项和为.
10.(2024·北京)设集合.对于给定有穷数列,及序列,,定义变换:将数列的第项加1,得到数列;将数列的第列加,得到数列…;重复上述操作,得到数列,记为.
(1)给定数列和序列,写出;
(2)是否存在序列,使得为,若存在,写出一个符合条件的;若不存在,请说明理由;
(3)若数列的各项均为正整数,且为偶数,证明:“存在序列,使得为常数列”的充要条件为“”.
11.(2024·天津)已知数列是公比大于0的等比数列.其前项和为.若.
(1)求数列前项和;
(2)设,,其中是大于1的正整数.
(ⅰ)当时,求证:;
(ⅱ)求.
参考答案:
1.D
【分析】可以根据等差数列的基本量,即将题目条件全转化成和来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.
【解析】方法一:利用等差数列的基本量
由,根据等差数列的求和公式,,
又.
故选:D
方法二:利用等差数列的性质
根据等差数列的性质,,由,根据等差数列的求和公式,
,故.
故选:D
方法三:特殊值法
不妨取等差数列公差,则,则.
故选:D
2.B
【分析】由结合等差中项的性质可得,即可计算出公差,即可得的值.
【解析】由,则,
则等差数列的公差,故.
故选:B.
3.95
【分析】利用等差数列通项公式得到方程组,解出,再利用等差数列的求和公式节即可得到答案.
【解析】因为数列为等差数列,则由题意得,解得,
则.
故答案为:.
4.①③④
【分析】利用两类数列的散点图的特征可判断①④的正误,利用反例可判断②的正误,结合通项公式的特征及反证法可判断③的正误.
【解析】对于①,因为均为等差数列,故它们的散点图分布在直线上,
而两条直线至多有一个公共点,故中至多一个元素,故①正确.
对于②,取则均为等比数列,
但当为偶数时,有,此时中有无穷多个元素,
故②错误.
对于③,设,,
若中至少四个元素,则关于的方程至少有4个不同的正数解,
若,则由和的散点图可得关于的方程至多有两个不同的解,矛盾;
若,考虑关于的方程奇数解的个数和偶数解的个数,
当有偶数解,此方程即为,
方程至多有两个偶数解,且有两个偶数解时,
否则,因单调性相反,
方程至多一个偶数解,
当有奇数解,此方程即为,
方程至多有两个奇数解,且有两个奇数解时即
否则,因单调性相反,
方程至多一个奇数解,
因为,不可能同时成立,
故不可能有4个不同的正数解,故③正确.
对于④,因为为单调递增,为递减数列,前者散点图呈上升趋势,
后者的散点图呈下降趋势,两者至多一个交点,故④正确.
故答案为:①③④
【点睛】思路点睛:对于等差数列和等比数列的性质的讨论,可以利用两者散点图的特征来分析,注意讨论两者性质关系时,等比数列的公比可能为负,此时要注意合理转化.
5.
【分析】当时,不妨设,则,结合为闭区间可得对任意的恒成立,故可求的取值范围.
【解析】由题设有,因为,故,故,
当时,,故,此时为闭区间,
当时,不妨设,若,则,
若,则,
若,则,
综上,,
又为闭区间等价于为闭区间,
而,故对任意恒成立,
故即,故,
故对任意的恒成立,因,
故当时,,故即.
故答案为:.
【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.
6.(1)
(2)证明见解析
(3)证明见解析
【分析】(1)直接根据可分数列的定义即可;
(2)根据可分数列的定义即可验证结论;
(3)证明使得原数列是可分数列的至少有个,再使用概率的定义.
【解析】(1)首先,我们设数列的公差为,则.
由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,
故我们可以对该数列进行适当的变形,
得到新数列,然后对进行相应的讨论即可.
换言之,我们可以不妨设,此后的讨论均建立在该假设下进行.
回到原题,第1小问相当于从中取出两个数和,使得剩下四个数是等差数列.
那么剩下四个数只可能是,或,或.
所以所有可能的就是.
(2)由于从数列中取出和后,剩余的个数可以分为以下两个部分,共组,使得每组成等差数列:
①,共组;
②,共组.
(如果,则忽略②)
故数列是可分数列.
(3)定义集合,.
下面证明,对,如果下面两个命题同时成立,
则数列一定是可分数列:
命题1:或;
命题2:.
我们分两种情况证明这个结论.
第一种情况:如果,且.
此时设,,.
则由可知,即,故.
此时,由于从数列中取出和后,
剩余的个数可以分为以下三个部分,共组,使得每组成等差数列:
①,共组;
②,共组;
③,共组.
(如果某一部分的组数为,则忽略之)
故此时数列是可分数列.
第二种情况:如果,且.
此时设,,.
则由可知,即,故.
由于,故,从而,这就意味着.
此时,由于从数列中取出和后,剩余的个数可以分为以下四个部分,共组,使得每组成等差数列:
①,共组;
②,,共组;
③全体,其中,共组;
④,共组.
(如果某一部分的组数为,则忽略之)
这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含个行,个列的数表以后,个列分别是下面这些数:
,,,.
可以看出每列都是连续的若干个整数,它们再取并以后,将取遍中除开五个集合,,,,中的十个元素以外的所有数.
而这十个数中,除开已经去掉的和以外,剩余的八个数恰好就是②中出现的八个数.
这就说明我们给出的分组方式满足要求,故此时数列是可分数列.
至此,我们证明了:对,如果前述命题1和命题2同时成立,则数列一定是可分数列.
然后我们来考虑这样的的个数.
首先,由于,和各有个元素,故满足命题1的总共有个;
而如果,假设,则可设,,代入得.
但这导致,矛盾,所以.
设,,,则,即.
所以可能的恰好就是,对应的分别是,总共个.
所以这个满足命题1的中,不满足命题2的恰好有个.
这就得到同时满足命题1和命题2的的个数为.
当我们从中一次任取两个数和时,总的选取方式的个数等于.
而根据之前的结论,使得数列是可分数列的至少有个.
所以数列是可分数列的概率一定满足
.
这就证明了结论.
【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.
7.(1),
(2)证明见解析
(3)证明见解析
【分析】(1)直接根据题目中的构造方式计算出的坐标即可;
(2)根据等比数列的定义即可验证结论;
(3)思路一:使用平面向量数量积和等比数列工具,证明的取值为与无关的定值即可.思路二:使用等差数列工具,证明的取值为与无关的定值即可.
【解析】(1)
由已知有,故的方程为.
当时,过且斜率为的直线为,与联立得到.
解得或,所以该直线与的不同于的交点为,该点显然在的左支上.
故,从而,.
(2)由于过且斜率为的直线为,与联立,得到方程.
展开即得,由于已经是直线和的公共点,故方程必有一根.
从而根据韦达定理,另一根,相应的.
所以该直线与的不同于的交点为,而注意到的横坐标亦可通过韦达定理表示为,故一定在的左支上.
所以.
这就得到,.
所以
.
再由,就知道,所以数列是公比为的等比数列.
(3)方法一:先证明一个结论:对平面上三个点,若,,则.(若在同一条直线上,约定)
证明:
.
证毕,回到原题.
由于上一小问已经得到,,
故.
再由,就知道,所以数列是公比为的等比数列.
所以对任意的正整数,都有
.
而又有,,
故利用前面已经证明的结论即得
.
这就表明的取值是与无关的定值,所以.
方法二:由于上一小问已经得到,,
故.
再由,就知道,所以数列是公比为的等比数列.
所以对任意的正整数,都有
.
这就得到,
以及.
两式相减,即得.
移项得到.
故.
而,.
所以和平行,这就得到,即.
【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.
8.(1)
(2)
【分析】(1)利用退位法可求公比,再求出首项后可求通项;
(2)利用等比数列的求和公式可求.
【解析】(1)因为,故,
所以即故等比数列的公比为,
故,故,故.
(2)由等比数列求和公式得.
9.(1)
(2)
【分析】(1)利用退位法可求的通项公式.
(2)利用错位相减法可求.
【解析】(1)当时,,解得.
当时,,所以即,
而,故,故,
∴数列是以4为首项,为公比的等比数列,
所以.
(2),
所以
故
所以
,
.
10.(1)
(2)不存在符合条件的,理由见解析
(3)证明见解析
【分析】(1)直接按照的定义写出即可;
(2)利用反证法,假设存在符合条件的,由此列出方程组,进一步说明方程组无解即可;
(3)分充分性和必要性两方面论证.
【解析】(1)由题意得;
(2)假设存在符合条件的,可知的第项之和为,第项之和为,
则,而该方程组无解,故假设不成立,
故不存在符合条件的;
(3)我们设序列为,特别规定.
必要性:
若存在序列,使得为常数列.
则,所以.
根据的定义,显然有,这里,.
所以不断使用该式就得到,,必要性得证.
充分性:
若.
由已知,为偶数,而,所以也是偶数.
我们设是通过合法的序列的变换能得到的所有可能的数列中,使得最小的一个.
上面已经证明,这里,.
从而由可得.
同时,由于总是偶数,所以和的奇偶性保持不变,从而和都是偶数.
下面证明不存在使得.
假设存在,根据对称性,不妨设,,即.
情况1:若,则由和都是偶数,知.
对该数列连续作四次变换后,新的相比原来的减少,这与的最小性矛盾;
情况2:若,不妨设.
情况2-1:如果,则对该数列连续作两次变换后,新的相比原来的至少减少,这与的最小性矛盾;
情况2-2:如果,则对该数列连续作两次变换后,新的相比原来的至少减少,这与的最小性矛盾.
这就说明无论如何都会导致矛盾,所以对任意的都有.
假设存在使得,则是奇数,所以都是奇数,设为.
则此时对任意,由可知必有.
而和都是偶数,故集合中的四个元素之和为偶数,对该数列进行一次变换,则该数列成为常数列,新的等于零,比原来的更小,这与的最小性矛盾.
综上,只可能,而,故是常数列,充分性得证.
【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.
11.(1)
(2)①证明见详解;②
【分析】(1)设等比数列的公比为,根据题意结合等比数列通项公式求,再结合等比数列求和公式分析求解;
(2)①根据题意分析可知,,利用作差法分析证明;②根据题意结合等差数列求和公式可得,再结合裂项相消法分析求解.
【解析】(1)设等比数列的公比为,
因为,即,
可得,整理得,解得或(舍去),
所以.
(2)(i)由(1)可知,且,
当时,则,即
可知,
,
可得,
当且仅当时,等号成立,
所以;
(ii)由(1)可知:,
若,则;
若,则,
当时,,可知为等差数列,
可得,
所以,
且,符合上式,综上所述:.
【点睛】关键点点睛:1.分析可知当时,,可知为等差数列;
2.根据等差数列求和分析可得.
相关试卷
这是一份2024年高考数学真题分类汇编04:数列,共19页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2022高考数学真题分类汇编06 数列(学生与教师版),文件包含2022高考数学真题分类汇编06数列教师版docx、2022高考数学真题分类汇编06数列学生版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
这是一份2022高考数学真题分类汇编04平面向量,共3页。试卷主要包含了平面向量,选择题,填空题等内容,欢迎下载使用。